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Introduction
Most of the models utilised in the description of financial time series are written in terms of a 
continuous time diffusion St that satisfies the stochastic differential equation (SDE):

dSt = μStdt + σSt dBt [Eqn 1]

where dBt ~ N(0,dt) is the increment to Brownian motion process, and σSt and μSt denote the 
volatility and drift function, respectively. This class of parametric models has been extensively 
used to portray the dynamics of financial variables, including stock prices, interest rates and 
exchange rates. A stochastic process St is said to follow a geometric Brownian motion (GBM) if it 
satisfies the above SDE.

The GBM is one of the most popular stochastic processes and undoubtedly an effective instrument 
in modelling and predicting the random changes in stock prices that evolve over time. It is 
essentially useful for index price study because the process in question assumes that percentage 
changes are independent and identically distributed over equal and non-overlapping time length 
(Luenberger 1995; Ross 2000). The GBM model assumes that the instantaneously expected rate of 
return is constant. Hence, the constant instantaneous expected drift assumption of the standard 
Brownian process is substituted with the constant expected rate of return in the geometric Brownian 
process (Hull 2000). The GBM model usually assumes that the distribution of asset returns is either 
normal or lognormal. However, financial data often have heavier tails than can be captured by the 
standard GBM model. As such, there is a need to use non-normal distributions to better model and 
deal with the heavy tails (Carol 2004; Tan 2005; Tan & Chu 2012; Tan & Tokinaga 2006, 2007). 
However, intractable likelihood functions for SDEs make inference challenging, necessitating the 
requirement of simulation-based techniques to estimate and maximise the likelihood function. The 
sequential Monte Carlo (SMC) methods or the particle filter have allowed for the accurate 
evaluation of likelihoods at fixed parameter values (Nemeth, Feamhead & Mihaylova 2014).

Orientation: Geometric Brownian motion (GBM) model basically suggests whether the 
distribution of asset returns is normal or lognormal. However, many empirical studies have 
revealed that return distributions are usually not normal. These studies, time and again, 
discover evidence of non-normality, such as heavy tails and excess kurtosis.

Research purpose: This work was aimed at analysing the GBM with a sequential Monte Carlo 
(SMC) technique based on t-distribution and compares the distribution with normal distribution.

Motivation for the study: The SMC or particle filter based on the t-distribution for the GBM 
model, which involves randomness, volatility and drift, can precisely capture the 
aforementioned statistical characteristics of return distributions and can predict the random 
changes or fluctuation in stock prices.

Research approach/design and method: The particle filter based on the t-distribution is 
developed to estimate the random effects and parameters for the extended model; the  mean 
absolute percentage error (MAPE) were calculated to compare distribution fit. Distribution 
performance was assessed through simulation study and real data. 

Main findings: Results show that the GBM model based on student’s t-distribution is 
empirically more successful than the normal distribution. 

Practical/managerial implications: The proposed model which is heavier tailed than the 
normal does not only provide an approximate solution to non-normal estimation problem. 

Contribution/value-add: The GBM model based on student’s t-distribution establishes an 
efficient structure for GBM and  volatility modelling.

Estimation of geometric Brownian motion model 
with a t-distribution–based particle filter

Read online:
Scan this QR 
code with your 
smart phone or 
mobile device 
to read online.

https://www.jefjournal.org.za�
https://orcid.org/0000-0001-7521-2858
https://orcid.org/0000-0001-8602-8327
mailto:enkemnole@unilag.edu.ng
https://doi.org/10.4102/jef.v12i1.159
https://doi.org/10.4102/jef.v12i1.159
http://crossmark.crossref.org/dialog/?doi=10.4102/jef.v12i1.159=pdf&date_stamp=2019-02-21


Page 2 of 9 Original Research

https://www.jefjournal.org.za Open Access

In this article, we extended our investigations by introducing 
a GBM model based on the t-distribution–based particle 
filter to approximate the return distributions of assets and 
compared the distribution with normal distribution. In 
evaluating the proposed GBM level of precision, the model 
parameters are estimated. An SMC or particle filter technique 
based on student’s t-distribution is developed to estimate the 
parameters for the extended model. The ensuing models are 
applied to modelling the closing stock price of five firms of 
the Nigerian Stock Exchange (NSE).

Review of relevant literature
A number of studies have been conducted in the area of GBM as 
a model for stock prices. Some scholars have tried extending, 
and hence improving, the standard GBM model. Duplantier 
(2005) referred to Louis Bachelier, who in his PhD thesis in 1900 
mentioned that the stock price dynamics follow a Brownian 
motion. The process he applied can produce shares that could 
allow both negative security prices and option prices that 
exceed the price of the underlying asset. Osborne (1959) refined 
the Bachelier model by employing the stochastic exponential of 
the Brownian motion to model stock price. Samuelson (1965) 
extended the GBM by using the discount rate in pricing. For 
him, the return rates, instead of the stock prices, follow the 
GBM (Piasecki 2006). Some scholars represented rare events by 
jumps and introduced a model of jump diffusion (see Kou 
2002; Merton 1976). Others presented a more realistic stochastic 
process for the underlying process (e.g. stock price) by bringing 
in a stochastic process for the volatility, that is, with the variance 
of the stock return as random (e.g. Heston 1993; Hull & White 
1987; Stein & Stein 1991).

Thao (2006) tried to replace the Brownian motions with 
fractional Brownian motions in the diffusion model. 
Sattayatham, Intrasit and Chaiyasena (2007) improved on 
Thao’s results by adding a Poisson jump into the model.

Geometric Brownian motion has been extensively used as a 
model for stock prices, commodity prices, growth in demand 
for products and services, and real options analysis (Benninga 
& Tolkowsky 2002; Nembhard, Shi & Aktan 2002; Thorsen 
1998). It has also been used for representing future demand 
in capacity studies (Lieberman 1989; Ryan 2006; Whitt 1981). 
On the whole, its acceptance was motivated from the 
assumption that random changes over time follow a GBM 
process (Marathe & Ryan 2005). On the other hand, some 
scholars have raised relevant questions concerning the 
accuracy of the GBM (e.g. Marathe & Ryan 2005; Ross 1999; 
Thorsen 1998; Watteel-Sprague 2000).

Works on modelling return distributions of financial assets 
also exist. The most used are the normal, the lognormal and 
the non-Gaussian stable distributions. Other types of 
distributions, such as the student’s t, the skewed student’s t, 
the generalised t, the generalised error distribution (GED), 
the skewed GED and mixture distribution of Gaussian 
distributions, have also been applied. The normal distribution 
is one of the most usually applied distributions. It was 

extensively used in the 1700s; in 1800, Karl Gauss successfully 
applied it to astronomical data analysis. It became known 
as the Gaussian distribution. Empirical analyses from the 
late 1960s were not successful in supporting the normal 
assumption on estimating the return distribution of real 
financial data. Mandelbrot (1963) affirmed that although 
financial prices or its logarithm following a Brownian motion 
is mathematically convenient, it is difficult to fit the real 
financial data with this assumption. Fama (1965) analysed 
equilibrium asset pricing and noted that the daily return 
distribution follows a non-Gaussian distribution. Both 
Mandelbrot and Fama pointed out that excess kurtosis and 
heavy tails exist in real financial data.

Hsu, Miller and Wichern (1974) and Hagerman (1978) 
showed from their studies that return distributions are non-
normal. Bollerslev (1987) found leptokurtosis in monthly 
Standard & Poor’s 500 Index returns. Kariya et al. (1995) and 
Nagahara (1996) revealed that the return distributions of 
Japanese stocks are fat-tailed and skewed. Kitagawa, Sato 
and Nagahara (1999) found that daily or weekly return 
distributions are not normal but fat-tailed and skewed 
according to observed financial data. Harvey and Siddique 
(2000) and Premaratne and Bera (2000) confirmed that the 
asymmetry of return distribution exists in real business data. 
Gerig, Vicente and Fuentes (2009) presented a model that 
explained the shape and scaling of the distribution of intraday 
stock price fluctuations and verified the model by using a 
large database made up of several stocks traded on the 
London Stock Exchange. Their findings showed that the 
return distributions for these stocks are non-Gaussian, similar 
in shape and appear to be stable over intraday time scales.

Theodossiou (1998) advocated the use of a skewed generalised 
t-distribution, which combines the student’s t and skewed 
student’s t, to model return distributions. Furthermore, 
Theodossiou (2000) pointed out that a skewed GED fits the 
financial data well, while asymmetry and excess kurtosis are 
observed in the financial data.

Methodology
Geometric Brownian motion model
Geometric Brownian motion is the stochastic process used in 
the Black–Scholes methodology to model the evolution of 
prices in time. As in a typical structural model, let us consider 
a firm with its value of the asset Vt following a GBM:

dVt = μVtdt + σvVtdBt [Eqn 2]

where μ and σ are drift and volatility parameters to be 
estimated. The drift informs us on the average rate at which 
a value increases in a stochastic process, while the volatility is 
the constant characteristic of the stock prices that tells us the 
measure of the fluctuations of the stock prices. Relatively 
high volatility means that the stock price varies continuously 
within relatively large intervals. The notation dt is an 
infinitely approaching 0 time difference between time points 
t and t - 1 and the last term involves random dBt ~ N(0, dt) 
increment to Brownian motion process. The right-hand 
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side term μVtdt controls the ‘trend’ of this trajectory and the 
term σVtdBt controls the random noise in the trajectory. 
Nevertheless, one of the foremost challenges in applying this 
model to financial market data is the fact that the underlying 
asset value process is unobservable.

Applying the Ito’s formula (see Lamberton & Lapeyre 1997) on 
equation (2) with F(S) = lnS, we obtain the following equation:

S t Bln 1
2t t

2µ σ σ= −








 +  [Eqn 3]

The stochastic process, as characterised by equation (3), 
indicates that lnS is normally distributed. Equivalently, S is 
lognormally distributed.

Taking the exponential of both sides and inserting the initial 
condition S0, we obtain the solution. The analytical solution 
of this GBM is given by:

S S t Bexp(( 1
2

)t t0
2µ σ σ= − +  [Eqn 4]

This SDE is principally significant in the modelling of many 
asset classes. Equation (4) is the asset price model that can 
predict an asset price at specific time t. We can represent GBM 
solution as follows:

S S et
X

0
t=  [Eqn 5]

where X t B( 1
2

) .t t
2µ σ σ= − +

Geometric Brownian motion model maximum 
likelihood estimation
The parameters μ and σ can be estimated using historical data 
for stock price, bearing in mind that the time difference for 
data with monthly frequency is ∆ =t 1

12
.

As Brigo et al. (2007) noted, the parameters that need to be 
optimised are θ = ( μ, σ) for the GBM.

The likelihood function is denoted as:
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The likelihood function is maximised to get the optimal 
estimators ( , ).θ µ σ= � ��

As stated earlier, the Wiener process dBt is assumed to follow 
a normal distribution with mean 0 and variance dt. From the 
corresponding continuous density function of the Wiener 
process, the natural logarithm of the likelihood function is 
obtained:
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expression does not hold any importance for the parameters 
estimation and is removed from the log-likelihood function; 
thus, its transformed version gives:
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From the above, the specific log-likelihood function of the 
GBM is found by replacing the equivalent Weiner process 
such that:
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The natural logarithm of the likelihood function is 
differentiated in terms of μ and σ and then equated to zero 
to give equations:

 y t
1
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∆� ��  [Eqn 6]
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Geometric Brownian motion with t-distribution
Asset return distributions are frequently presumed to follow 
either a normal or a lognormal distribution. It can also follow 
GBM based on the Gaussian process. However, many 
empirical studies have shown that return distributions are 
usually not normal. They often find evidence of non-
normality, such as heavy tails, excess kurtosis and finite 
moments. One class of fat-tailed distributions with the 
potential to give a better approximation to the distribution of 
stock returns is the t-distribution.

An extension of the version of the GBM model, wherein it is 
assumed that the random noise process, dBt, is a student’s 
t-distribution, is considered. The proposed student’s 
t-distribution with degrees of freedom, v, for the last term, 
dBt, effects a change in the equation:

dVt = μVtdt + σVtdBt dBt ~ tv, t= 1,…,n. [Eqn 8]

The distribution of the error term for this specification 
according to Shimada and Tsukuda (2005) assumes the 
following form:
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Sequential Monte Carlo algorithm analysis
The SMC, also known as particle filter algorithm (Gordon, 
Salmond & Smith 1993), in sequential estimation on hidden 
asset value and model parameters estimation, is applied 
under the GBM model. This method applies the concept of 
sampling-importance-resampling (SIR) (Rubin 1987). One of 
the key challenges in applying structural models to financial 
market data is the fact that the underlying asset value process 
is unobservable. Furthermore, at each time t, market values of 
stock are known only up to the time t, which means that the 
information needs to be updated sequentially. In this section, 
with known model parameters, we apply the particle filter 
algorithm to update the information about the underlying 
asset value process recursively from the observed times series. 
By running the filtering algorithm, the conditional distribution 
of the underlying asset value is approximated and recursively 
updated, given observed prices.

Assuming that we have at time t weighted particles ( ){ , }( )f wt
i

t
i  

drawn from ( )f x yt t , ( )ft
i  is a set of particle filters with 

associated weight ( )wt
i . This is seen as an empirical 

approximation for the density made up of point masses:

f x y w x f( ) ( ).t t t
i

i

M

t t
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1

( )∑ δ≈ −
=

 [Eqn 9]

Kitagawa and Sato (2001) and Kitagawa (1996) offer an 
algorithm for filtering as follows:
(1) For i = 1, …, N, generate a random number ( )0

( )
0f p xi



(2) Repeat the following steps for t = 1, …, T.
  (a) For i = 1, …, N, generate a random number  ( )( )w q wt

i

 (b) For i = 1, …, N, compute p F f w( , )t
i

t
i

t
i( )

1
( ) ( )= −

 (c) For i = 1, …, N, compute w p y p( )t
i

t t
i( ) ( )=

 (d) Generate , 1,...( ) =f i Nt
i  by resampling p p,...,t

i
t

N( ) ( )

(3) This Monte Carlo filter returns

f i N t m{ , 1,..., , 1,..., }t
i( ) = =  so that 

N
x f f x Y1 ( ) ( ).

i

N

t t
i

t t
1

( )∑ δ − ≈
=

Estimation procedure
In this section, with known model parameters, we apply the 
particle filter algorithm based on t-distribution to update 
the information about the underlying asset value process 
recursively from the observed times series of stock prices.

With known parameters Θ = {μ, σ}, we observe the time series 
of stock prices S = {St; t = 1, … T} and have the hidden asset 
process to be estimated V = {Vt; t = 1, … T}. The algorithm is as 
follows:

The algorithm for the filtering is an extension of Godsill, 
Doucet and West’s (2004) and Kim and Stoffer’s (2008) 
algorithms. From here M samples from f(Vt,| St) for each t were 
obtained.
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 (b) Generate ( )ft
i  by resampling with weights, wt

j( )

Resample from V V V{( ),( ),...,( )t t t
M

1
(*1)

1
(*2)

1
(* )

+ + +  with probability 
proportional to wt

j( ).

Evaluation methods of geometric Brownian 
motion
As averred by Lawrence, Klimberg and Lawrence (2009), we 
have three measurements of forecasting model which 
involve time period t. The measurements are number of 
period forecasts, n; actual value in time period at time t, Yt; and 
forecast value at time period t, Ft. The mean absolute 
percentage error (MAPE) seems to be the most widely used to 
evaluate the forecasting method that considers the effect of 
the magnitude of the actual values. It is a measure of prediction 
accuracy of a forecasting method in statistics. It usually 
expresses accuracy as a percentage and is defined as follows:

https://www.jefjournal.org.za�


Page 5 of 9 Original Research

https://www.jefjournal.org.za Open Access

MAPE
n

Y F
Y

100 1 t t

t
∑= × −

The difference between Yt and Ft is divided by the actual 
value Yt again. The absolute value in this calculation is 
summed for every forecasted point in time and divided by 
the number of fitted points n. Multiplying by 100 makes it a 
percentage error.

Empirical results and discussion
Data
We apply the above-described methodology to model the 
stock prices of five firms of the NSE – each from five different 
sectors, namely the banking sector (Guaranteed Trust Bank 
[GTB]), oil and gas sector (Oando), construction sector 
(Julius Berger [Jberger]), health care sector (GlaxoSmith) and 
industrial goods sector (Chemical & Allied Product [CAP]) 
over the period 02 January 2010 to 31 December 2014.

The data series is transformed into daily log returns series so 
that we can obtain stationary series. Descriptive statistical 
summary is obtained to view the data for the daily stock 
prices and returns of all the indices.

Table 1 reports the descriptive statistics for all the five selected 
indices. The value of the kurtosis for returns is high and 
greater than 3. This shows that the distribution is leptokurtic, 
that is, it is fat-tailed and that the returns display financial 
characteristics of volatility clustering and leptokurtosis. The 
skewness for both prices and returns is positive, showing 
that the distribution has a long right tail. The high values of 

kurtosis for the returns indicate that extreme price changes 
occurred frequently during the sampling period. The positive 
skewness and kurtosis indicated non-normal series. With 
reference to Jarque-Bera statistics, the stock index series is 
non-normal at 99% confidence interval as the probability is 
0 × 10-6, which is less than 0.01.

Figures 1–5 show the plot of each of the five firms’ stock 
prices.

The stock prices of each of the five firms of the NSE for the 
year 2010–2014 were used to derive the drift and volatility. 
Table 2 shows the observed values.

These two parameters (drift and volatility) were then used to 
create the geometric Brownian path for both the GBM normal 
and student’s t-distribution of each of the five firms of the 
NSE. We compute the MLEs and the corresponding log-
likelihood for each stock. Table 3 summarises the estimated 
parameters for both the GBM normal and student’s 
t-distribution.

The log-likelihood for the GBM student’s t-distribution 
model is higher than that of the model for the GBM normal 
for each of the five stock series. Comparing the two models 
based on the Akaike information criterion (AIC), it is found 
that the GBM t-distribution model outperforms the GBM 
normal model for each of the five stocks.

The GBM normal and student’s t–based particle filter method 
are then run on the simulated prices process, and the average 
MAPE is calculated. Both models estimate the volatility 
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FIGURE 1: Guaranteed Trust Bank (GTB) (a) stock pricing over time, (b) returns over time.

TABLE 1: Descriptive statistical summary for the daily stock prices.
Index Prices Returns

Mean Standard 
deviation

Skewness Kurtosis Jarque-Bera Mean Standard 
deviation

Skewness Kurtosis Jarque-Bera

Guaranteed 
Trust Bank (GTB)

40.3754 18.4573 0.6718 3.3487 194.387
(0.0000)

0.0030950 0.0278 -2.4739 29.4686 684.195
(0.0000)

Oando 70.9741 47.4833 1.0297 4.8445 202.394
(0.0000)

-0.00062810 0.0352 -1.3034 54.4961 312.573
(0.0000)

Julius Berger 
(JBerger)

46.8880 25.5413 0.9931 4.2569 207.281
(0.0000)

0.0041886 0.0458 -1.5541 42.6513 497.263
(0.0000)

GlaxoSmith 76.9873 48.2532 1.1542 4.2342 213.237
(0.0000)

0.0070399 0.0300 -0.1911 30.2326 513.240
(0.0000)

Julius  
Berger (CAP)

49.3441 27.3775 0.2783 3.6845 195.142
(0.0000)

0.000875734 0.0367 -3.6781 20.7944 795.142
(0.0000)

GTB, Guaranteed Trust Bank; JBerger, Julius Berger; CAP, Chemical & Allied Product.
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process of each of the five firms’ stock prices using known 
parameters. Table 4 presents the observed values.

Graphically, for a single run, the estimation results obtained 
from running these two models are shown in Figures 6–10. 
Each figure shows a GBM’s normal paths (blue line), 
student’s t paths (red line) and the actual volatility price 
curve (black line) of each of the five firms’ stock prices.
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FIGURE 2: Oando (a) stock pricing over time, (b) returns over time.

0 500 1000 1500 2000 2500 3000
0

20
40
60
80

100
120
140
160
180

Time

Pr
ic
e

0 500 1000 1500 2000 2500 3000
-1.5

-1

-0.5

0

0.5

1

Time

Re
tu
rn
s

a b

FIGURE 3: JBerger (a) stock pricing over time, (b) returns over time.
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FIGURE 4: GlaxoSmith (a) stock pricing over time, (b) returns over time.
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FIGURE 5: Chemical and Allied Product (CAP) (a) stock pricing over time, (b) returns over time.

TABLE 2: Drift and volatility values of stock prices.
Index Drift (µ) Volatility (σ)

GTB 0.0720 0.2816

Oando 0.0485 0.2794

JBerger 0.0514 0.2723

GlaxoSmith 0.0354 0.2837

CAP 0.0624 0.2808

GTB, Guaranteed Trust Bank; JBerger, Julius Berger; CAP, Chemical & Allied Product.
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Figures 6–10 show the plots of volatility estimation for each 
of the five firms’ stock prices. The plots show that the GBM 
student’s t–based particle filter estimate (red line) and the 

actual volatility (black line) lie close to each other compared 
to the GBM normal estimate (blue line).

Discussion
Geometric Brownian motion model usually assumes that the 
distribution of asset returns is either normal or lognormal. 
Previous approaches to the estimation of GBM model have 
revealed that return distributions are usually not normal. In 
this article, a GBM model based on the t-distribution–based 
particle filter to approximate the return distributions of 
assets is introduced, and a comparison of the distribution 
and normal distribution is done.
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FIGURE 6: Brownian path for Guaranteed Trust Bank (GTB).
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FIGURE 7: Brownian path for Oando.
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TABLE 4: Evaluation statistic-distribution comparison of techniques based on the 
normal and student’s t.
Models Mean absolute percentage deviation

GBM normal 0.0967 = 9.67%
GBM student’s t 0.0652 = 6.52%

GBM, Geometric Brownian motion.

TABLE 3: Estimated parameters of the geometric Brownian motion normal and student’s t-distribution.
Index GBM normal GBM student’s t

μ σ Log- likelihood AIC μ σ Log-likelihood AIC

GTB 0.45 0.37 -2797 4359 0.34 1.09 -2740 4248
Oando 0.12 0.33 -2341 4686 0.30 1.27 -2331 4568
JBerger 0.10 0.40 -2149 4302 0.37 1.03 -2135 4176
GlaxoSmith 0.23 0.36 -2344 4255 0.41 1.04 -1234 4234
CAP 0.34 0.44 -2783 4684 0.32 1.23 -1345 4221

CAP, Chemical & Allied Product, JBerger, Julius Berger; AIC, Akaike information criterion; GBM, geometric Brownian motion; GTB, Guaranteed Trust Bank.
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The descriptive statistics for the five indices of the NSE are 
given in Table 1. The highest average returns are obtained in 
GlaxoSmith. The other indices, which show higher mean 
returns, are JBerger and GTB. This reflects the performance 
of these indices. Furthermore, JBerger has the highest 
standard deviation (0.045), which represents higher volatility, 
while the lowest standard deviation belongs to GTB (0.027). 
The returns of the five selected indices are negatively 
skewed, indicating that the returns are flatter to the left 
compared to the normal distribution. The significant kurtosis 
indicates that return distribution has sharp peaks compared 
to a normal distribution. The Jarque-Bera (1980) statistics 
confirmed that index returns are non-normally distributed.

In evaluating the proposed GBM level of precision, the 
model parameters are estimated. A particle filter technique 
based on student’s t-distribution is developed to estimate the 
parameters for the GBM model. Our goal was to considerably 
improve the forecasting performance of a GBM model using 
student’s t particle filter, which is heavier tailed than the 
normal distribution. The stock prices of each of the five firms 
were used to derive the drift and volatility parameters (see 
Table 2). These two parameters were then used to create the 
geometric Brownian path for both the GBM normal and 
student’s t-distribution of each of the five firms of the NSE. 
Table 3 presents the estimation results along with their 
log-likelihood and the AIC for the student’s t and the normal 
GBM models. The AIC and the log-likelihood values 
highlight the fact that the GBM student’s t-distribution better 
estimates the series than the GBM normal distribution. In 
fact, the log-likelihood of -2740, -2331, -2135, -1234 and -1345 
for the GBM student’s t-distribution model increases, leading 
to AIC of 4248, 4568, 4176, 4234 and 4221 versus 4359, 4686, 
4302, 4255 and 4684 for the normal GBM model. The 
evaluation statistics in terms of MAPE indicate that the GBM 
student’s t-distribution is highly accurate and the predictive 
exactness is higher, as proved by the MAPE value, which is 
lower than 10% (see Table 4).

The plot of volatility estimation for each of the five firms’ stock 
prices is shown in Figure 6–10. The graphical presentation 
shows three scenarios for the GBM model – the representation 

of the trajectories of the actual volatility path (shown by 
black line), the GBM normal (shown by blue line) and the 
GBM student’s t estimate (shown by red dotted line) – and 
infers that the estimation of the GBM student’s t significantly 
outperforms the normal GBM model by accurately tracking 
the actual volatility path for each of the stock prices.

Conclusion
This work presented an extension of the random noise 
process, dBt, in the GBM model from normal to student’s 
t-distribution. The goal was to compare and contrast the two 
models in five different stock market periods in terms of their 
predictability of such exceptional movements in the NSE 
market. The study revealed that the student’s t GBM 
performed better than the normal GBM in estimating both 
the volatility and the parameters of the model. A particle 
filter technique based on student’s t-distribution is developed 
to estimate the random effects and parameters for the 
extended model. The functions provided by MATLAB 
enabled us to develop the techniques based on the student’s 
t GBM model and a strategy for fitting the model. This change 
to the proposed model allows for a more robust fit, giving us 
a new tool to explore the tail fit. The student’s t GBM model 
was compared and evaluated with the normal GBM model. 
The experimental outcome of the simulation and real data 
analyses confirms the viability of the proposed method. The 
evaluation statistics are calculated to compare the fit of 
distributions. Student’s t GBM is more highly accurate than 
the normal GBM as proved by the MAPE value, which is 
lower than 10%. The results, based on daily stock prices, 
reveal that the student’s t GBM is comparable to the normal 
GBM model but empirically is more successful.
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