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Abstract 
Given the volatile nature of global financial markets, managing as well as predicting financial risk 
plays an increasingly important role in banking and finance. The Value at Risk (VaR) measure has 
emerged as the most prominent measure of downside market risk. It is measured as the alpha 
quantile of the profit and loss distribution. Recently a number of distributions have been proposed to 
model VaR: these include the extreme value theory distributions (EVT), Generalized Error Distribution 
(GED), Student’s t, and normal distribution. Furthermore, asymmetric as well as symmetric volatility 
models are combined with these distributions for out-sample VaR forecasts. This paper assesses the 
role of the distribution assumption and volatility specification in the accuracy of VaR estimates 
using daily closing prices of the Johannesburg Stock Exchange All Share Index (JSE ALSI). It is found 
that Student’s t distribution combined with asymmetric volatility models produces VaR estimates in 
out-sample periods that outperform those from models stemming from normal, EVT/symmetric 
volatility specification. 
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1. INTRODUCTION 

The measurement of market risk has become a primary concern for market regulators and 
financial institutions. This is largely due to the increased volatility and interdependence in 
global financial markets in recent years. Market risk refers to the risk of incurring trading book 
losses caused by adverse movements in market prices and returns. Banks are particularly 
affected by such risks, due to the establishment of the Basel Capital Accord (Basel I) in 1996 
and more recently Basel III in 2010. The Capital Adequacy Directive by the Bank of International 
Settlement in Basel requires internationally active banks to hold sufficient risk capital to cover 
possible losses on their trading portfolios on 99% of occasions, over a holding period of ten days 
(Frey & McNeil, 2000). The value of such a capital requirement is termed VaR. Specifically VaR 
refers to the magnitude of likely losses over a specified period, resulting from ‘normal’ market 
movements.  

Intuitively VaR is measured as the alpha quantile of the return distribution of a portfolio. The 
assumption made about the observed return distribution is key to VaR computation. The list of 
distributions used in empirical applications includes the EVT, GED, Student’s t, and normal 
distribution. This paper assesses the role of the distribution assumption and volatility 
specification in the accuracy of VaR estimates using daily closing prices of the JSE ALSI. Contrary 
to many studies (Fernandez, 2003; Frey and McNeil, 2000) that recommend the use of EVT to 
model the fat-tailed behaviour of return distributions in VaR computations, our results show 
that the Student’s t distribution combined with asymmetric volatility models produces VaR 
estimates in out-sample periods that outperform VaR estimates obtained with models stemming 
from normal, EVT/symmetric volatility specification. These results suggest that the returns on 
the JSE are more leptokurtic with few occurrences of extreme losses. 

Distribution assumption, volatility specification and their implications for VaR estimates are an 
issue that has been also investigated recently by Huang, Hung and Chang (2010). They examine 
the relative importance of both the distribution assumption as well as variance specification in 
parametric VaR estimation, and find that both play significant roles. For the volatility 
specification in the parametric variance-covariance approach, for instance, they find that 
specifying either a symmetric, or alternatively an asymmetric volatility process can have a 
significant impact on the VaR results. Similarly, Burns (2002) finds that the quality of the VaR 
estimate depends solely on the type of GARCH model employed in the returns volatility 
specification. It is worth noting that a symmetric GARCH process assumes that positive and 
negative market shocks have impacts of similar magnitude on return volatility. In practice, 
however, negative shocks are found to have larger impact than positive shocks on the volatility 
of financial returns.  

Moreover, in an empirical comparison of different approaches for calculating and predicting 
VaR, Kuester, Mittnik and Paolella (2006) find that parametric VaR methods perform less well 
than is desirable from a statistical perspective due to distributional assumptions imposed on 
observed return distribution. Financial returns exhibit volatility clustering, excess kurtosis and 
skewness. As a result, standard methods of VaR calculation, in which it is assumed beforehand 
that a given distribution (normal, Student’s t, EVT, GED etc.) obtains, produce different results. 
This paper aims at finding the best combination of distribution and volatility specification that 
produces the best and most reliable VaR estimates. The paper proceeds as follows: section 2 
describes VaR and volatility specifications, followed by distribution assumptions; and section 3 
presents the empirical results and conclusion.  
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2. METHODOLOGY 

Traditionally, the volatility dynamics of financial returns are accurately modelled by employing 
the GARCH and/or Exponential GARCH (EGARCH) models proposed by Bollerslev (1986) and 
Nelson (1991) respectively. Two main motivations exist for using GARCH type models for the 
financial return volatility process. Firstly, the approximation-theoretical properties of the 
models are attractive, as they are able to describe the volatility clustering and leptokurtosis 
(high peaks and fat tails) that are observed in high frequency financial data. Secondly, GARCH 
models focus on the conditional variance rather than the unconditional variance of time series. 
From an economic perspective this is appropriate, since any uncertainty that can be eliminated 
by relying on past values is irrelevant (Kuester et al., 2006)  

The GARCH (1, 1) model is most commonly employed in the literature. The process is specified by 
a mean equation and variance equation as follows: 

Mean equation:  𝒓𝒕 = 𝝁(𝒓𝒕/𝒓𝒕−𝟏) + 𝝈𝒕𝒛𝒕           
𝒛~𝑵(𝟎,𝟏),       (1) 

Variance equation:  𝝈𝒕𝟐 = 𝜶𝟎 + 𝜶𝒆𝒕𝟐 + 𝜷𝝈𝒕−𝟏𝟐       (2) 

where 𝛼0, 𝛼, and 𝛽 are volatility parameters to be estimated. These three parameters capture 
the volatility dynamics of the conditional mean 𝜇(𝑟𝑡/𝑟𝑡−1). The GARCH (1, 1) process is 
stationary if (α + β) < 1. The return-generating process is specified in the mean equation. Even 
in cases where this equation does not provide an optimal specification of the return-generating 
process, Nelson (1992) finds that GARCH models are robust to misspecification. He concludes 
that the GARCH model is able to estimate the volatility process in a consistent manner, despite 
misspecification of the mean equation. Of greater importance is the specification of the 
variance equation, i.e. the volatility process.  

An alternative form of the GARCH model is the Exponential GARCH (EGARCH) model (Nelson, 
1991). The EGARCH model addresses a significant shortcoming of the GARCH model, namely its 
inability to capture the leverage effect. The leverage effect refers to the possibility that 
downward movements in the market are followed by higher volatilities than upward movements 
of the same magnitude. In this regard, the GARCH model is known as an example of symmetric 
volatility specification, whereas the EGARCH model is an example of an asymmetric volatility 
specification. Another advantage of the EGARCH model is that no restrictions need to be 
imposed on the volatility process for the purposes of estimation. This is in contrast to the 
stationary parameter restrictions of the GARCH model. The EGARCH model is described as non-
linear – i.e. the conditional variance is no longer modelled as a linear function of the lagged 
variance and lagged squared residual.  

The variance specification in the EGARCH model takes the form: 

 𝒍𝒐𝒈�𝝈𝒕𝟐� = 𝜶𝟎 + 𝜷. 𝒍𝒐𝒈�𝝈𝒕−𝟏𝟐 � + 𝜶 �𝒆𝒕−𝟏
𝝈𝒕−𝟏

� + 𝜸 𝒆𝒕−𝟏
𝝈𝒕−𝟏

   (3) 

In this EGARCH model, the conditional variance is captured in its logarithmic form. This implies 
that the leverage effect is exponential, which ensures that forecasts of the conditional variance 
will be non-negative. The leverage effect is captured by the coefficient γ . 
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3. DISTRIBUTION ASSUMPTIONS 

GARCH models assume that the underlying return-generating process has a normal distribution. 
In practice, financial returns (and innovations) are not normally distributed (Muteba Mwamba, 
2011). The normal distribution is a symmetrical distribution that can be fully described by its 
mean and standard deviation. In relation to financial returns, the normal distribution 
assumption has one major flaw: it drastically understates the size as well as frequency of 
extreme events (Urbani, 2010). This is due to the fact that the ends of the normal distribution 
tail off too quickly to be able to accurately describe the size and frequency of extreme events. 
Most financial market indices exhibit leptokurtosis (excess kurtosis) as well as negative 
skewness in their distributions. Leptokurtosis refers to the property that the distribution is more 
peaked than the normal distribution and has fatter tails than the normal distribution. The 
distribution’s negative skewness refers to the fact that there are more downside return extremes 
than upside return extremes. As Urbani (2010) notes, it is this negative skewness of the return 
distribution that explains the asymmetry of returns. Estimating VaR measures under the 
incorrect normality assumption significantly underestimates the frequency and size of extreme 
events. 

4. MARKET RISK MODEL 

To implement a robust market risk model that reliably predicts potential losses in the 
Johannesburg Stock Exchange, we first fit the return series by the following process: 

 𝒓𝒕 = 𝝁(𝒓𝒕/𝒓𝒕−𝟏) + 𝝈𝒕𝒛𝒕      (4) 

where 𝒓𝒕, 𝝁𝒕(𝒓𝒕/𝒓𝒕−𝟏), 𝒛𝒕 , 𝝈𝒕 represent respectively the return series, the conditional mean 
return, assumed to be an AR(1), the conditional volatility, and the innovations, assumed to be 
independent and identically distributed with mean zero and unit variance. The following 
equation is used to forecast the one-step-ahead forecast of VaR estimates: 

𝑽𝒂𝑹𝒕+𝟏(∝) = 𝝁𝒕+𝟏(𝒓𝒕/𝒓𝒕−𝟏) + 𝝈𝒕+𝟏(𝒓𝒕/𝒓𝒕−𝟏)𝑭−𝟏(𝜶)  (5) 
 

where 𝑭−𝟏(𝜶) is the alpha quantile of the innovations conditional distribution. We use both 
GARCH and EGARCH processes to model current volatility (𝝈𝒕) in Equation (5) and assume that 
the innovations conditional distribution 𝑭−𝟏(𝜶) is normal, Student’s t and Generalized Pareto 
Distribution (GPD) respectively. The assumption we make about the innovation conditional 
distribution 𝑭−𝟏(𝜶) allows us to compare separately EVT-based VaR estimates with those 
obtained with normal or Student’s t distribution.  

To understand the implications of the distribution assumption about innovations conditional 
distribution 𝑭−𝟏(𝜶), we use different combinations of normal, Student’s t and GPD distribution 
with both symmetric (GARCH) and asymmetric (EGARCH) processes. These combinations yield 
the following six different market risk models using Equation (5) above: 

GARCH – N (symmetric GARCH, normally distributed innovations) 

GARCH – T (symmetric GARCH, Student’s t innovations) 

EGARCH – N (asymmetric GARCH, normally distributed innovations) 
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EGARCH – T (asymmetric GARCH, Student’s t innovations) 

GARCH – GPD (symmetric GARCH, Generalized Pareto innovations) 

EGARCH – GPD (asymmetric GARCH, Generalized Pareto innovations) 

5. STRESS-TESTING THE MODELS 

Equation (5) is used to obtain a one-period-ahead forecast of VaR in the out-sample period. 
Both upside and downside VaR forecasts are estimated. Stress testing is practically based on 
counting the number of violations for each one of the six market risk models abovementioned. 
Our aim is to see how well assumed innovations conditional distribution (normal, Student’s t or 
EVT) fits individually both the upper and lower tails of observed return distribution. In this case, 
a violation refers to an instance where an actual observed JSE ALSI loss (gain) exceeds the 
forecasted downside (upside) VaR estimate as measured by one of the six abovementioned 
market risk models. The intuition behind counting violations is straightforward: over the period 
under consideration, the market risk model that results in few violations will be deemed the best 
market risk model. 

6. EMPIRICAL RESULTS 

Daily JSE All Share Index (ALSI) price data for the period between 31 December 2000 and 29 July 
2010 is employed, making up a total of 2759 observations. We divide this sample into two 
arbitrary sub-samples: the in-sample period (31 December 2000 to 02 September 2007) and the 
out-sample period (03 September 2007 to 29 July 2010). Our objective is to compare the ability 
of each one of the abovementioned market risk models in forecasting the JSE ALSI potential 
losses in the out-sample period. The ALSI returns are generated from the price data as follows: 

 𝑹𝑬𝑻𝑨𝑳𝑺𝑰𝒕 = 𝒍𝒏(𝑷𝒕) − 𝒍𝒏(𝑷𝒕−𝟏)     (6) 

where 𝑹𝑬𝑻𝑨𝑳𝑺𝑰𝒕 represents period 𝒕 return, 𝑷𝒕 represents period 𝒕 price, and 𝑷𝒕−𝟏 is price in 
period 𝒕 − 𝟏. TABLE 1 shows that the daily returns series exhibits negative skewness as well as 
excess kurtosis, and that the Jarque Bera normality test is rejected. Clearly, the ALSI daily return 
series is not normally distributed.  

TABLE 1: Descriptive statistics 

Mean Stddev Skewness Kurtosis Jarque Bera Pbty of JB 
0.00045 0.01324 -0.20612 6.41433 1359.68300 0.00000 

Source: Authors’ calculations 

The conditional mean is found to be an AR (3) given that it has the lowest Akaike Information 
Criterion (AIC) when compared with other lag specifications. The AIC makes adjustments to the 
likelihood function in order to account for the number of parameters to be estimated.  

Estimation results for the six market risk models are displayed in TABLE 2. The symmetric GARCH 
(1, 1) models all satisfy the GARCH parameter restrictions; all the parameters in the variance 
equation are statistically significant. Also, (α + β) < 1, indicating that the symmetric GARCH 
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processes are stationary. (α + β) determines how quickly the variance forecast will converge to 
the unconditional variance. 

In the EGARCH models, all estimated parameters in the variance equations were found to be 
statistically significant. The EGARCH models can incorporate the leverage effect. This is because 
the conditional variance equations in the GARCH (1, 1) models depend only on the magnitudes 
of the lagged residuals, and ignore their signs. The leverage effect term in the EGARCH model is 
represented by RESID (-1)/SQRT (GARCH (-1)). For the leverage effect to be present, this 
estimated parameter is expected to be negative and statistically significant, as is found to be 
the case.  

The AIC and Schwartz Bayesian Criterion (SBC) are used to select the volatility model that 
provides the best fit for the data. The AIC and SBC for the six estimated models are also 
displayed in TABLE 2. The EGARCH-T model has the lowest AIC and SBC statistics, indicating that 
it provides the best fit for the data. 

For the GARCH-GPD and EGARCH-GPD models, the estimated parameters of the Generalized 
Pareto Distribution are also displayed. These are the threshold U, the shape parameter 𝜉 and the 
scale parameter 𝛽 used for the quantile calculation. 

TABLE 2: Distribution and GARCH type results 

 
GARCH-N GARCH-T EGARCH-

N 
EGARCH-

T 
GARCH-

GPD 
EGARCH

-GPD 

Mean Eq.       

Constant 0.0008* 0.0009* 0.0005* 0.0006* 0.0009* 0.0006* 

AR(1) 0.0657* 0.0610* 0.0575* 0.0578* 0.0619* 0.0573* 

AR(2) 0.0245 0.0226 0.0134 0.0146 0.0245 0.0147 

AR(3) -0.0566* -0.0540* -0.057* -0.053* -0.0553* -0.056* 

Variance Eq. 
      

Constant 0.000003* 0.000003* -0.335* -0.304* 0.000003* -0.326* 

Resid(-1)^2  [α] 0.1123* 0.1064* 
  

0.1096* 
 

GARCH(-1)  [β] 0.8713* 0.8763* 
  

0.8733* 
 

Student’s t dof 
 

14.16* 
 

15.31* 
  

GED parameter 
    

1.71* 1.74* 

ABS[Resid(-1)/sqrt 
(GARCH(-1)]   

0.1739* 0.1516* 
 

0.1671* 

Resid(-1)/sqrt 
(GARCH(-1))   

-0.079* -0.084* 
 

-0.080* 

LOG(GARCH(-1)) 
  

0.9779* 0.9795* 
 

0.9784* 

α + β 0.983 0.982 
  

0.983 
 

AIC -6.0795 -6.0875 -6.0945 -6.102 -6.0848 -6.0982 

SBC -6.0644 -6.0703 -6.0773 -6.0827 -6.0676 -6.0789 

Quantile 2.33 2.97 2.33 2.94 2.78 2.74 
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GARCH-N GARCH-T EGARCH-

N 
EGARCH-

T 
GARCH-

GPD 
EGARCH

-GPD 

U 
    

1.62’ 1.63’ 

ξ 
    

-0.0036’ 0.064’ 

β 
    

0.506’ 0.4474’ 

Source: Authors’ calculation and deduction 

“*”, “’” significance at 1%, and 5% respectively 

The stress-testing results are reported in TABLE 3 and plotted in the appendix for each market 
risk model (see FIGURES 1 – 6). 

TABLE 3: Model stress testing results 

Market Risk 
Model 

GARCH Volatility 
Specification Distribution Assumption 

Confi-
dence 
level 

Number of 
Violations 

GARCH - N Symmetric Normal distribution 99% 19 violations 

GARCH - T Symmetric Student’s t distribution 99% 4 violations 

EGARCH - N Asymmetric Normal distribution 99% 17 violations 

EGARCH - T Asymmetric Student’s t distribution 99% 3 violations 

GARCH - GPD Symmetric Generalized Pareto distribution 99% 6 violations 

EGARCH - GPD Asymmetric Generalized Pareto distribution 99% 4 violations 

Source: Authors’ calculation and deduction 

From the results, one can conclude that the asymmetric GARCH specification (EGARCH) produces 
market risk models that are superior to symmetric GARCH models. This is clearly observed in 
TABLE 3: VaR models employing EGARCH volatility specifications have significantly fewer 
violations over the stress-testing period. GARCH specifications that fail to capture the leverage 
effect produce less accurate VaR measures. Clearly, distribution assumptions play an important 
role in VaR modelling. The risk models assuming normal distributions contain the highest number 
of violations of all estimated models. The normal distribution is clearly not applicable to daily 
JSE ALSI returns. The normal distribution fails to adequately capture information in the 
distribution tails, leading to inaccurate VaR measures. Risk models assuming a fat-tailed 
distribution, like the Student’s t-test, perform strikingly better in estimating market risk. The 
same applies to the EVT models, their distribution tails being captured by the Generalized Pareto 
Distribution. Because of their adequate focus on the distribution tails, the risk models assuming 
Student’s t or Generalized Pareto distribution result in a significant reduction in the number of 
violations. 

7.CONCLUSION 

Recently, the Johannesburg Stock Exchange has become more volatile due to dynamic changes in 
market sentiment and investors’ risk attitude. Since volatility is the main ingredient in value at 
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risk estimation, the issue of how to forecast it accurately has received much attention. In this 
paper symmetric (GARCH) as well as asymmetric (EGARCH) volatility models were used under 
different distribution assumptions i.e. extreme value theory distributions, Generalized Error 
Distribution, Student’s t, and normal distribution. The evidence shows that the distributional 
assumption plays an important role in forecasting volatility and predicting potential losses on 
the Johannesburg Stock Exchange. Using the JSE ALSI, the Student’s t distribution has produced 
fewer violations in the out-sample period for both symmetric and asymmetric based market risk 
models. Therefore, the distribution assumption tends to play a more important role than the 
volatility specification in computing JSE ALSI value at risk estimates. These results suggest that 
JSE returns are more leptokurtic with few occurrences of extreme losses. 
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APPENDIX 

 
FIGURE 1: Garch-N 
Source: Authors’ calculations, based on JSE ALSI return series 

 

 

 
FIGURE 2: Garch-L 
Source: Authors’ calculations, based on JSE ALSI return series 
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FIGURE 3: Garch-N 
Source: Authors’ calculations, based on JSE ALSI return series 

 

 

 
FIGURE 4: Egarch-T 
Source: Authors’ calculations, based on JSE ALSI return series 
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FIGURE 5: Garch-GPD 
Source: Authors’ calculations, based on JSE ALSI return series 
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FIGURE 6: Egarch-GPD 
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