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Abstract 
A stylised fact of monetary policymaking is that central banks do not immediately respond 
to new information but seem instead to prefer to wait until sufficient ‘evidence’ to warrant 
a change has accumulated. However, theoretical models of inflation targeting imply that an 
optimising central bank should continuously respond to shocks. This article attempts to 
explain this stylised fact by introducing a small menu cost which is incurred every time the 
central bank changes the interest rate. It is shown that this produces a relatively large 
range of inaction because this cost will induce the central bank to take the option value of 
the status quo into account. In other words, because action is costly, the central bank will 
have an incentive to wait and see whether or not the economy will move closer to the 
inflation target of its own accord. Next, the article analyses the implications for the time 
series properties of interest rates. In particular, we examine the effect of the interest rate 
sensitivity of aggregate demand, the slope of the Lucas supply function and the variance of 
demand shocks on the size of the interest rate step and the expected length of the time 
period till the next interest rate step. Finally, we analyse the effect of menu costs on 
inflationary expectations. In this respect we find that the economy will suffer from an 
inflationary bias if the cost of raising the interest rate exceeds the cost of lowering it.  

Keywords:  

Inflation targeting, dynamic menu costs, uncertainty. 



S Eijffinger, E Schaling & W Verhagen 

68 Journal of Economic and Financial Sciences | JEF | April 2007 1(1): 67-93 

1. INTRODUCTION 

“… In sum, given that inflation was forecast to be close to the target in two years’ time and 
that the outlook beyond then was highly uncertain, the Committee could sensibly wait to 
gather more information before concluding that policy needed to be changed …” 

Minutes of Monetary Policy Committee Meeting, 5 and 6 August 1998 

As a result of the disappointment with monetary targeting and/or fixed exchange rates, 
many countries have now adopted a regime of (direct) inflation targeting. The use of 
explicit inflation targets derives its theoretical rationale from the fact that they can 
overcome credibility problems since they can replicate the results of optimal performance 
incentive contracts (see Walsh (1995) and Svensson (1997a)). From a theoretical 
perspective this has also stimulated the research on monetary policy rules which deal with 
the question of how these explicit inflation targets should be translated into monetary 
policy instruments (see e.g. Taylor (1993, 1998), Svensson (1997b) and Haldane (1997)). 
This literature explicitly recognises the fact that, because of lags in the transmission 
mechanism, the actual future rate of inflation will not be under the direct control of the 
central bank. Rather, central banks will use their ability to manipulate the (short-term) 
interest rate to target the expected future inflation rate conditional on all information that 
is currently available. Consequently, these models also prescribe the appropriate response 
to a shock to one of the determinants of inflation. In particular, on the assumption that the 
central bank cares only about inflation stabilisation, it should assess the impact of the 
shock on the conditional inflation forecast and subsequently change the interest rate so as 
to maintain the equality between the conditional inflation forecast and the assigned 
inflation target.1 As a result, the optimal conduct of monetary policy implies that the short-
term interest rate will inherit the time-series properties of the determinants of inflation. 

However, a stylised fact of actual monetary policymaking is that central banks do not 
immediately change the interest rate in response to new information about the state of the 
economy.2 Rather, the instrument of monetary policy tends to remain constant in the face 
of a changing environment and tends to be changed by discrete amounts, while the 
variables which appear in the central bank’s reaction function (e.g. inflation and output) 
change continuously. Following Bhundia and Yates (1997) we will refer to this phenomenon 
as interest rate stepping. It should be emphasised that this is not the same as interest rate 
smoothing. The latter can be defined as the well-established practice of implementing a 
desired change in the monetary policy stance in a series of small steps in the same direction 
rather then taking one single large step all at once. 

The purpose of this article is to reconcile interest rate stepping with optimising behaviour 
on the part of the central bank and to explore the economic implications of the resulting 
discrete interest rate changes in a continuously changing environment. To this end we 
introduce a small ‘menu’ cost which is incurred every time the central bank changes the 
interest rate. Following the literature on the impact of such costs of decision-making on the 
behaviour of monopolistic price-setters (see e.g. Mankiw (1985) and Akerlof and Yellen 
(1985)), under these conditions it is no longer optimal for the central bank to respond to 
small deviations from the optimum. Moreover, in a dynamic setting these costs will induce 



INTEREST RATE STEPPING: THEORY AND EVIDENCE  

Journal of Economic and Financial Sciences | JEF | April 2007 1(1): 67-93 69 

the central bank to take the option value of the status quo into account. Obviously, this 
option value will be irrelevant if action can be taken at no cost since in that case there is 
nothing to prevent the central bank from keeping inflation equal to the assigned target 
continuously. Since the cost, once incurred, will not be reversed by an interest change in the 
opposite direction, there is an incentive for the central bank to wait and see whether or not 
the economy will move inflation back towards the target of its own accord. As a result, the 
central bank will allow the inflation rate to fluctuate freely within a certain range.  

The article proceeds as follows:  Section 2 outlines a simple closed economy and provides a 
number of reasons for the existence of menu costs. In Section 3 we present the solution to 
the model under three different scenarios:  a benchmark case, where menu costs are 
absent; the case where the central bank solves a string of unrelated ‘period’ problems; and 
finally the case where the central bank explicitly recognises the intertemporal aspect of its 
problem. Subsequently, we examine the factors which influence the width of the inflation 
band. Section 4 examines the implications for the dynamics of short-term interest rates in 
the light of the empirical literature on this subject. Section 5 solves for the expected rate of 
inflation and assesses under which conditions the economy will suffer from an inflationary 
bias. Finally, Section 6 concludes the article. 

2. A SIMPLE CLOSED ECONOMY MODEL 

Consider the following economy in continuous time. Aggregate supply (yt

s) is given by the 
familiar Lucas supply function 

 )( e
t

s
ty ππβ −=  (1) 

In this equation the natural rate of output (y*) has been normalised to zero. The parameter 
β measures the slope of the Lucas supply function, πt is the (instantaneous) rate of 
inflation rate and πe denotes inflationary expectations. As indicated by the absence of a 
time subscript, inflationary expectations do not depend on any particular point in time. One 
can think of this as the result of the existence of fixed nominal wage contracts. More 
precisely, agents will determine the expected rate of inflation using the long-run 
probability density function of inflation conditional on the central bank’s optimal monetary 
policy.3 The exact factors which determine πe will be discussed in Section 5. For now we note 
that the central bank will take inflationary expectations as given when setting the interest 
rate. Aggregate demand (yt

d) is modelled as follows: 

 ttt
d
t iy ηπα +−−= )(  (2) 

Here it is the instrument of the central bank, i.e. the nominal interest rate which expresses 
the monetary policy stance (e.g. the UK base rate, the US Federal Funds Target or the ECB’s 
repo rate). The parameter α measures the sensitivity of aggregate demand to the ex post 
real interest rate and ηt is an exogenous demand shock which follows a driftless Brownian 
motion: 
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 dwd ση =  (3) 

There is no particular economic reason for assuming a continuous-time random walk on the 
demand shock. However, unlike more sophisticated processes (e.g. exhibiting mean-
reversion) this assumption will allow us to compute a relatively simple analytic solution to 
the central bank’s problem.  

As far as the preferences of the central bank are concerned, it is assumed that there is a 
basic trade-off between deviations of the rate of inflation from the assigned target (π*), 
on the one hand, and costs which are incurred whenever the interest rate is changed, on the 
other. In view of this trade-off the central bank will minimise the following intertemporal 
loss function: 
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Here δ is the central bank’s discount rate (which is inversely related to the policy horizon) 
and tj denotes the instants where the central bank decides to change the interest rate. Each 
time this happens the central bank will incur a cost which is equal to ‘C’ for which it holds 
that C is small (i.e. C ∼ h). Apart from these costs, the central bank is assumed to engage in 
strict inflation targeting.4 While this may seem a restrictive assumption, since virtually 
every central bank also cares about output fluctuations (at least around the natural rate of 
output), it should be emphasised that in our model, which features only demand shocks, 
inflation stabilisation implies output stabilisation.  

The presence of a small cost of changing the interest rate in the central bank’s loss function 
can be rationalised on a number of grounds. First of all, the central bank could partly 
internalise the costs incurred by agents who are bound into fixed nominal interest rate 
contracts. For instance, Cukierman (1990:113) argues that the central bank will be “… 
concerned with the predictability of interest rates rather than with their level …” The reason 
for this resides in the traditional task of the banking system to provide liquidity by 
transforming short-term liabilities into long-term assets. This implies that the interest 
rates charged on the asset side of the balance sheet are fixed for relatively long periods, 
while the interest rates paid on the liability side are likely to change every time the official 
interest rate changes. Stable official interest rates will therefore reduce the probability of 
an interest rate mismatch. 

Secondly, as argued by Crockett (1994), central bankers may also face a ‘psychological’ 
cost when they change their minds, for instance since this makes them vulnerable to 
allegations of inconsistency or incompetence. As argued by Goodhart (1999), this cost is 
likely to be prohibitive when the need for a change in the monetary policy stance is not very 
obvious to outside observers (i.e. when inflation or the inflation forecast is close to the 
target and output is close to potential). In that case, given the random walk nature of news 
about these variables, there is a considerable chance that an interest change that is 
optimal today will have to be reversed in the near future. This might give the impression 
that the central bank is uncertain about the appropriate direction for monetary policy. 
Moreover, despite a considerable degree of formal independence, the central bank may still 
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be under pressure from politicians not to raise interest rates. As a consequence, the central 
bank will also be reluctant to lower interest rates, because once they are lowered it may be 
‘politically difficult’ to increase them again.5 

Finally, there is an argument related to the way the interbank money market works. The Fed, 
for instance, announces a target for the Fed Funds Rate. Unpredictable shifts in the demand 
curve for central bank balances will cause the Fed Funds Rate to fluctuate randomly around 
this target (this is because the Fed subsequently corrects these shifts through open market 
operations to maintain the Fed Funds Rate equal to the target on average). If the Fed were 
to react optimally to every bit of economic news that comes in it would have to change the 
Fed Funds Target frequently by probably only a few basis points. Given the afore-mentioned 
volatility of the actual Fed Funds Rate, this would reduce the information value of interest 
rate changes, which presents an incentive to the Fed to economise on the number of steps 
to be taken.   

3. SOLUTION UNDER STATIC AND RATIONAL EXPECTATIONS 

3.1 No menu costs 
As a benchmark we will first solve for the equilibrium in the absence of menu costs (C = 0). 
From equations (1) and (2) we can derive the following reduced form for inflation: 

 tt
e

t i η
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In order to rule out a perverse response of inflation to its determinants we need to assume 
that β > α. Obviously, the central bank’s intertemporal loss function (4) will be minimised if 
it sets it so as to ensure that the condition πt = π* holds continuously.6 Substituting this 
condition in equation (5) and solving for it yields the following endogenous instrument rule 

 t
e

ti η
α

ππ
α
βπ 1)( ** +−+=  (6) 

This equation is very similar to the Taylor rule (Taylor (1993)) in the sense that it expresses 
the optimal value of the central bank’s instrument as a linear function of the determinants 
of inflation. In particular, the interest rate will inherit the time-series properties of the 
demand shock and will therefore also follow a driftless Brownian motion.7 It appears that 
the afore-mentioned stability condition concerning the ratio of the slope of the Lucas 
supply function and the interest rate sensitivity of aggregate demand (β/α) implies that 
the response coefficient for (πe - π*) will be strictly greater than one. This is a well-known 
and robust condition for stability in the literature on monetary policy rules (see Taylor 
(1998)).  

Plugging the optimal rule (6) back into the reduced form for inflation (5) yields: πt = π*. 
Since wage setters know that the central bank will always keep inflation equal to the target 
they will determine the expected rate of inflation as follows: πe = E(π) = π*. As a result, the 
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economy will permanently be at the equilibrium where it holds that πt = πe = π* and y = y* = 
0.  

3.2 Positive menu costs 
If changing the interest rate is costly, it will no longer be optimal to do so if the deviation of 
the inflation rate from the target is small (in a manner to be made more precise later). In 
other words, there will be a trade-off between losses arising from deviations of inflation 
from its target, on the one hand, and losses stemming from interest rate adjustments, on 
the other. As a starting point for the analysis we will compute the solution for the inflation 
rate under the condition that the interest rate is kept constant. Immediately after a change 
in the interest rate (at, say, t = 0), the economy will be in a situation where the inflation 
rate is equal to the target (π0 = π*). Without loss of generality we normalise the initial value 
of the demand shock to zero (η0 = 0). Inflationary expectations are fixed and equal to πe. 
Plugging these parameter values into the optimal instrument rule (6) yields the following 
for the nominal interest rate at t=0: 

 )( **
0 ππ

α
βπ −+= ei  (7) 

Substituting this expression into the reduced form equation for inflation (5) we obtain an 
expression for πt which holds as long as the interest rate is maintained at the value 
specified in equation (7). Since we can repeat this procedure for every instant the interest 
rate is changed, we can derive the following general expression for the rate of inflation 
which holds for all periods between interest rate changes: 
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Here εt is defined as the stochastic shock to the inflation gap (xt). This shock can be 
thought of as a re-normalised value of the demand shock (ηt). Starting from t = 0 the shock 
to the inflation gap will be equal to the demand shock (i.e. εt = ηt for it = i0). Now suppose 
that at t = τ the central bank decides to change the interest rate. Obviously, the new 
interest rate will be set so as to bring inflation back to the target (i.e. it will hold that iτ = π* 
+ (β/α) (πe-π*) + ητ/α ). Since at the time of resetting we need to have ετ = 0 in equation 
(8), it will hold that: εt = ηt - ητ for it = iτ. Of course, this normalisation of the demand 
shock can be applied to all instants in which the interest rate is changed (i.e. for all tj). 

Now suppose the central bank ignores the fact that it is dealing with a dynamic 
optimisation problem and simply solves a string of unrelated ‘period’ optimisation problems 
instead. In other words, the central bank will treat εt as a ‘once-and-for-all shock’ or, 
equivalently, it has static expectations in the sense that it does not take the stochastic 
properties of εt into account. At each point in time, the central bank will then compare the 
discounted present value of the flow cost (xt

2/ δ) to the cost of changing the interest rate 
(C). Hence, under static expectations, the central bank will set it according to the optimal 
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rule (6) if the following condition is met: 

 δππθε
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Consequently, even under static expectations ‘menu’ costs which are of second-order 
smallness (C∼h2) will lead to a range of inaction which is of first-order smallness (s∼h). As 
noted by Dixit (1991), it is in this sense that small menu costs produce relatively large 
effects. 

Under rational expectations the central bank will recognise the intertemporal aspect of its 
problem and will explicitly take the stochastic process driving the demand shock into 
account. In other words, if the loss stemming from the inflation gap passes the ‘static 
expectations threshold’ in equation (9) it is no longer optimal to change the interest rate 
and incur the cost of doing so. This is because the central bank has the option to wait and 
see whether or not the economy will move inflation back to the target level of its own 
accord. Similar to the case where the central bank has ‘static’ expectations, the 
optimisation problem boils down to choosing a threshold level for the inflation gap (b) 
which will trigger a change in the interest rate. On the assumption that the cost of raising 
the interest rate is equal to the cost of lowering it, the upper and lower threshold levels 
imply a symmetrical band within which inflation is allowed to move according to the process 
defined in equation (8). Moreover, because the cost of changing the interest rate does not 
depend on the magnitude of the change (i.e. these costs stem simply from the fact that 
there is a change in the interest rate) the inflation gap will be set to zero whenever it hits 
one of the thresholds.  

First of all, to solve the central bank’s problem (4) we now have to translate the stochastic 
properties of the shock to the inflation gap (εt) into stochastic properties for the inflation 
gap itself (xt). Applying the rules of stochastic calculus to equation (8) we can write:8 

 dwdx θσ=  (10) 

Next, we would like to find an expression for the loss function (4) which can be minimised 
with respect to the central bank’s choice variable (b). We realise that the interest rate will 
not be changed as long as the inflation gap is strictly within the band. Hence, for any x ∈ (-
b, b) we can express the RHS of equation (4) by means of the Bellman equation: 

 { ( ) }dxxLEedtxxL dt ++= −δ2)(  (11) 

Expanding the RHS of this equation and using Ito’s lemma (see Appendix A) yields a second-
order differential equation: 

 0)("
2
1 222 =+ xxLσθ  (12) 

In Appendix A it is shown that the general solution to this equation can be expressed as 
follows: 
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The first two parts on the RHS denote the expected present value of the loss function under 
the condition that the interest rate is never changed. Consequently, the third term on the 
RHS captures the value of being able to make interest rate adjustments. In particular, the 
effect of the threshold level b on the intertemporal loss function L(x) will be fully 
incorporated in the constant of integration (A).  

It now remains to solve for the constant of integration A and the threshold level b 
simultaneously. Following Dixit (1991, 1993), there are two conditions which pin down these 
parameters. First of all, the Value Matching Condition (VMC) says that in the optimum the 
reduction in the value of L(x) obtained by exercising control should equal the cost of 
changing the interest rate. In other words, the optimal choice of the threshold level implies 
that there are no discontinuities in the intertemporal loss function (if there were ‘discrete 
jumps’ in L(x) for a particular choice of b this choice would obviously not be optimal). 
Applying this to equation (13) we obtain: 
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Secondly, there is the Smooth Pasting Condition (SPC), which requires the graphs of the L(x) 
and C-functions to meet tangentially at the point where x=b. This can be understood by 
observing that, for expression (13) to be minimised, we need the first-order condition 
A’(b)=0. Differentiating the Value Matching Condition with respect to b and using this first-
order condition yields:9 
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Since both equation (14) and (15) are highly non-linear, A and b can generally only be 
solved numerically. However, Dixit (1991) has shown that the solution for b can be 
approximated analytically (see Appendix A); this yields: 
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Hence, under rational expectations fourth-order menu costs (C∼h4) will have a first-order 
effect on the band of inaction (b∼h). The reason is that under rational expectations the 
policymaker will take the option value of the status quo into account. In particular, when 
the inflation gap hits the ‘static expectations threshold’ specified in equation (9) it is no 
longer optimal for the central bank to reset the inflation gap back to zero by incurring the 
small cost equal to C. Instead, at this point the central banker will wait for a small amount 
of time (dt) during which he will receive new information about the state of the economy. 
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More precisely, the central bank will be able to see if the inflation gap moves back towards 
zero of its own accord. Consequently, there will be a trade-off between the ‘period’ flow 
cost stemming from the inflation gap, on the one hand, and the cost of exercising control 
plus the option value of the status quo, on the other.  

This is illustrated in Figure 1, which depicts the situation immediately after an interest rate 
step has been taken. The aggregate supply curve (ys) is drawn for the situation where πe = 
π*. The demand shock has the effect of shifting the aggregate demand curve (yd) randomly 
along the aggregate supply curve. If there are no costs to changing the interest rate (C = 0) 
the central bank will offset each shock so as to preserve the situation where inflation is 
equal to the target. However, if changing the interest rate is costly, the demand curve will 
be allowed to shift around until the rate of inflation hits one of the thresholds.  

Equation (16) allows us to examine the effect of structural and preference parameters on 
the threshold level for the inflation gap: 

PROPOSITION 1: 

The inflation gap threshold (b) will increase if: 

 The cost of changing the interest rate (C) increases 

 The volatility of the demand shock (σ) increases 

 The slope of the Lucas supply function (β) decreases 

 The interest rate sensitivity of aggregate demand (α) increases 

FIGURE 1: The Optimal Band Width 
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The proof of this proposition follows immediately from equation (16). Obviously, an 
increase in the cost of changing the interest rate will induce the central bank to accept a 
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larger inflation gap before taking action. Next, the effect of the volatility of the demand 
shock, the slope of the Lucas supply function and the interest rate sensitivity of aggregate 
demand can be understood from the way they affect the volatility of the stochastic process 
driving the inflation gap as described in equation (10). This is because an increase in the 
volatility of the inflation gap will also increase the option value of the status quo.  

First of all, since the inflation gap is driven by the demand shock, an increase in the 
volatility of the demand shock (σ) will spill over into higher inflation gap volatility. Next, a 
decrease in the slope of the Lucas supply function (β) will enhance the effect of a given 
demand shock on inflation since now a larger part of this shock will be absorbed by inflation 
at the expense of the effect on output. Finally, if aggregate demand becomes more 
sensitive to the ex post real interest rate (it - πt) this will enhance the well-known ‘vicious 
circle of instability’ by which an increase in inflation will increase aggregate demand 
through the erosion of real interest rates, thereby fuelling a further increase in inflation. 

4. IMPLICATIONS FOR THE DYNAMICS OF SHORT-TERM INTEREST RATES 

The behaviour of the central bank’s key interest rate and the implications of this behaviour 
for longer-term interest rates have been extensively studied in the empirical literature.10 For 
instance, Rudebusch (1995) provides a survey of empirical tests of the expectations 
hypothesis of the term structure of interest rates, the upshot of which is that term spread 
predicts future movements in interest rates fairly well in the very short run (up to 1 month) 
and in the long run (2 years and longer). The first finding can be attributed to the tendency 
of many central banks to smooth interest rates (i.e. to implement the required increase or 
decrease in a series of small steps rather than all at once). The second observation can be 
explained by the fact that in the long run the level of interest rates will be determined by 
the central bank’s desire to achieve its ultimate monetary policy goals. Since the latter are 
to a considerable extent known to the public, agents will be able to predict interest rate 
movements over long horizons with a reasonable degree of accuracy.  

However, in the medium run the predictive ability of the term spread is very poor, which led 
many researchers to reject the rational expectations theory of the term structure. Mankiw 
and Miron (1986) have argued that the lack of predictive ability can be explained by 
explicitly taking the manner in which the central bank controls interest rates into account. 
In particular, they suggest the Fed imparts random walk behaviour to the Federal Funds 
Target in which case the hypothesis of rational expectations implies precisely that future 
short-term interest rates should not be predictable. This idea has been extended by 
Rudebusch (1995), Balduzzi et al. (1997) and Balduzzi et al. (1998). These authors explicitly 
model the process generating the central bank’s target interest rate by postulating that, on 
any given day within the sample period, there will be a relatively small but equal probability 
of a target change of fixed size in either direction.11 Moreover, Balduzzi et al. (1998) 
document a new stylised fact, namely that the volatility and persistence of the spread 
increases with the maturity of the loan. They show that spreads of longer-term (e.g. 3 or 6 
month) rates from the target are mainly driven by expectations of future target changes. 
When a target change takes place, all ‘adjustment pressures’ will be released. However, 
immediately thereafter the market starts to receive new information, which leads to partial 
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predictability of the next target change. Obviously, in view of the fact that the central bank 
engages in interest rate stepping, the impact of this information on the spread will increase 
with the maturity of the debt instrument.  

In view of this description of interest rate stepping in the empirical literature it is 
interesting to investigate the factors which determine the size of the interest rate step, the 
expected duration till the next target change and the extent to which the next target 
change is predictable. First of all, in our model interest rate steps will always be of a given 
and fixed size.12 This is because the interest rate will be reset at a new optimal level if and 
only if the inflation gap hits one of the thresholds (i.e. if it holds that |xt| = b). Suppose that 
starting from t = 0, the inflation gap first hits one of the barriers at t = τ. From equation (8) 
it can be seen that this implies that |ετ| = b (β-α). Plugging this expression into the 
optimal interest rate rule (6) yields: 

|iτ | = π* + (β/α) (πe-π*) + b(β-α) / α . Subtracting the expression for i0 obtained in 
equation (7) and using the expression for b in equation (16) will yield the following 
expression for the absolute value of the interest rate step: 
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PROPOSITION 2: 

The absolute value of the interest rate step ( | iτ - i0 | ) will increase if: 

 The cost of changing the interest rate (C) increases 

 The volatility of the demand shock (σ) increases 

 The slope of the Lucas supply function (β) decreases 

 The interest rate sensitivity of aggregate demand (α) increases for β/α< 3/2 or 
decreases for β/α > 3/2 

Proof: see Appendix D.  

The intuition is that an increase in C, an increase in σ or a decrease in β will induce an 
increase in the threshold level (b). Hence, a larger interest rate step will be needed when 
the inflation gap hits one of the barriers. As far as an increase in α is concerned, there are 
two opposing effects. On the one hand this will cause the threshold level (b) to go up. On 
the other hand, since aggregate demand will be more sensitive to interest rate changes, a 
smaller step will be needed for any given value of the threshold, which will tend to decrease 
the size of the interest rate step. The model predicts that the first effect will dominate if the 
reaction coefficient for (πe-π*) in the optimal interest rate rule (6) is ‘relatively low’ (i.e. 
for 1 < β/α < 3/2).   

Next, we can investigate the factors which affect the expected period of time that will 
elapse before the next interest rate step is taken (T(x)). In Appendix C it is shown that for 
symmetrical threshold levels (-b, b) this is given by: 
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The following proposition summarises the effect of several model parameters on T(x): 

PROPOSITION 3: 

The expected time period that will elapse before the next interest rate step is taken (T(x)) 
will increase if: 

 the cost of changing the interest rate (C) increases 

 the slope of the Lucas supply function (β) increases for |x| < b/√2 or decreases for 
|x| > b/√2  

 the interest rate sensitivity of aggregate demand (α) decreases for |x| < b/√2 or 
increases for |x| > b/√2  

 the volatility of the demand shock (σ) decreases for |x| < b/√2 or increases for |x| > 
b/√2  

Proof: see Appendix D  

An increase in the costs of control (C) will increase the threshold level (b) because it will 
take longer before the inflation gap reaches one of the threshold levels. The result for the 
parameters β, α and σ is basically the outcome of two opposing forces. On the one hand, 
an increase in β, a decrease in α and/or a decrease in σ will reduce the volatility of the 
inflation gap (see equation (10)). This will increase the expected time period that will 
elapse before the interest rate is reset for any given value of the threshold level (b). 
However, there is also an indirect effect since a decline in the volatility of the stochastic 
process driving the inflation gap will reduce the threshold level itself (see Proposition 1). 
All else being equal, this will reduce the average time till the next interest rate step.  

Which one of these two effects dominates depends on the current value of the inflation gap 
(x). The model predicts that a decrease in volatility will increase the expected duration of 
the current monetary policy stance if the inflation gap is relatively small (i.e. if |x| < b/√2). 
In particular, this will hold for the average duration between two consecutive interest rate 
steps (T(0)) which is equal to the first term on the RHS of equation (18). In the empirical 
literature the probability of a target change during any given day in the sample period is 
usually estimated using the empirical frequency of target changes (i.e. the number of 
target changes divided by the number of business days in the sample; see e.g. Balduzzi et al. 
(1997)). Consequently, our model identifies some of the factors that determine this 
probability since the latter will be inversely related to T(0). 

Corollary 1:  

The average duration between consecutive interest rate steps (T(0)) will be increasing in 
the slope of the Lucas supply function (β) and the cost of changing the interest rate (C) 
and decreasing in the interest rate sensitivity of aggregate demand (α) and the volatility 
of the demand shock (σ).    
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Finally, to obtain an indication of the predictability of the next interest rate step we can 
compute the probability that the interest rate will be lowered next time Q(x). Suppose that 
in general the cost of raising the interest rate (Ch) differs from the cost of lowering it (Cl).13 
This will lead to an optimal range of inaction in the interval (-a, b) where a, b > 0. An 
asymmetry in the cost technology may arise because of the interaction between the desires 
of politicians and the central bank. For instance, when the latter is to some extent 
politically subservient, the cost of raising the interest rate may very well exceed the cost of 
lowering it. Raising the interest rate is politically unpopular, while lowering it may yield 
electoral benefits. The reverse situation may arise when the central bank wants to assert its 
independence in the face of politicians clamouring for interest rate cuts. In Appendix C it is 
shown that for x ∈ (-a, b), the probability that the interest rate will be decreased when it is 
reset (Q(x)) is given by:14 
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First of all, from this equation it can be seen that interest rate changes are perfectly 
anticipated by the time they occur (i.e. Q(-a) = 1 and Q(b)=0). This is because in our model 
the central bank does not have an information advantage over the public. In particular, this 
means that there is no uncertainty on the part of private agents concerning the position of 
the thresholds, and this allows them to anticipate interest rate changes with certainty the 
instant before they are implemented. Next, the effect of the cost of raising and the cost of 
lowering the interest rate (Ch and Cl respectively) on the probability of an interest rate 
decrease at the next step is summarised by the following proposition: 

PROPOSITION 4: 

The probability of an interest rate decrease at the next step (Q(x)) will increase if the cost 
of lowering the interest rate (Cl) decreases and/or if the cost of raising the interest rate (Ch) 
increases. 

Proof: see Appendix D.  

The intuition is that the absolute value of the upper threshold will exceed the absolute 
value of the lower threshold if the cost of raising the interest rate exceeds the cost of 
lowering it. This means that the probability that the inflation gap will first reach the lower 
threshold will increase for any given rate of inflation.  

5. THE EFFECT OF DYNAMIC MENU COSTS ON INFLATIONARY 
EXPECTATIONS 

Since the expected rate of inflation is locked into nominal wage contracts it will not 
respond to short-run fluctuations in aggregate demand and/or any one particular interest 
rate response to these fluctuations. In other words, the expected rate of inflation will be 
determined by agents’ beliefs concerning the long-run characteristics of monetary policy. 
In particular, they know the preferences of the central bank from which they can deduce the 
range of inaction and, consequently, the long-run probability density function for inflation 
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conditional on the thresholds chosen by the central bank. This, in turn, allows them to 
compute a rational expectation of inflation. 

In Appendix C it is shown that for thresholds –a and b, the long-run probability density 
function for the inflation gap φ(x) will be as follows: 
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This probability density function is depicted in Figure 2.  

FIGURE 2: Probability Density Function for the Inflation Gap 

x
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2/(a+b)

 
Using this we can compute πe = E(x) + π*, where the expected value of the inflation gap 
(E(x)) will be equal to: 
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From this we can infer the following relationship between the inflationary bias and the costs 
of raising or lowering the interest rate: 

PROPOSITION 5: 

The economy will suffer from an upward (downward) inflationary bias (πe > < π*) if the cost 
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of raising the interest rate exceeds (is smaller than) the cost of lowering it (Ch

> < Cl). 

Proof: see Appendix D 

In most models an inflationary bias arises because the policymaker faces a systematic 
temptation to create surprise inflation once nominal contracts are signed. This is because 
unanticipated inflation enables the policymaker to pursue various real objectives15 (e.g. an 
output level which is higher than the natural output level). In this model the central bank is 
not tempted to cheat the public since its only ultimate monetary policy goal is to stabilise 
inflation. The introduction of a small menu cost does not alter this basic fact, even though 
it means that control will no longer be exercised continuously. In that case, provided the 
cost structure is symmetrical (implying a = b), inflation will not deviate systematically from 
its target (π*). This in turn means that the latter will feature as the expected rate of 
inflation which is locked into nominal wage contracts. All this implies that the economy will 
be observed to move along a stable Phillips curve of the form πt = π* + (1/β)yt. This 
relationship is stable precisely because the central bank does not systematically try to take 
advantage of this relationship.16 

However, if for reasons mentioned earlier the cost of raising the interest rate is higher than 
the cost of lowering it, the probability mass to the right of the point where the inflation gap 
is zero (φ(0)) will exceed the probability mass to the left of this point (this is the situation 
depicted in Figure 2). Taking this into account, wage setters realise that the tendency to 
maintain the current policy stance longer in the face of upward inflationary pressures will 
produce an average rate of inflation which is higher than the target. At the risk of repetition 
it should be noted that this inflationary bias arises even though the central bank does not 
face a systematic temptation to generate surprise inflation. The optimal instrument rule 
(6) is fully credible (in the sense that the public faces no uncertainty about this rule) and 
implies that the inflation gap will be set equal to zero every time the central bank decides 
to ‘switch this rule on’. Moreover, changes in the monetary policy stance (i.e. the interest 
rate) are always fully anticipated the instant before they occur. 

6. SUMMARY AND CONCLUSION 

This article studied a simple model of inflation targeting in which inflation stabilisation 
features as the only ultimate goal of monetary policy. In addition, the central bank incurs a 
small cost every time the monetary policy stance (i.e. the short-term interest rate) is 
changed. Since this cost will induce the central bank to take the option value of the status 
quo into account, it will have a considerable effect on the inflation outcome. In particular, 
costs of fourth-order smallness will have a first-order effect on the band within which 
inflation is allowed to fluctuate without a change in the interest rate. This band provides an 
explanation for the well-documented central bank practice of interest rate stepping. We 
examine how the width of this band depends on the cost of changing the interest rate and 
the volatility of the inflation process. The latter will be determined by the volatility of the 
underlying demand shocks, the slope of the Lucas supply function and the interest rate 
sensitivity of aggregate demand. 

In the empirical literature interest rate stepping has been used extensively to offer a 
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‘rational expectations consistent’ explanation for the failure of the term spread to predict 
future movements in short-term interest rates. In view of these results we assessed the 
factors that determine the size of the interest rate step, the expected time till the next 
interest rate step and the probability that interest rates will fall next time the central bank 
decides to take action. Some of the propositions we derive in this respect lend themselves 
to empirical testing. For instance, the model predicts that the size of the interest rate step 
will be increasing in the cost of changing the interest rate and the volatility of the demand 
shock and decreasing in the slope of the Lucas supply curve. Similarly, the average duration 
between two consecutive steps will be decreasing in the interest rate sensitivity of 
aggregate demand and the volatility of the demand shock and increasing in the slope of the 
Lucas supply function and the cost of changing the interest rate. Finally, we examine the 
effect of these ‘menu’ costs on inflationary expectations. We show that the economy will 
suffer from an inflationary bias if the cost of raising the interest rate exceeds the cost of 
lowering. This result is interesting since it shows that an inflationary bias can arise even if 
the central bank does not try to create surprise inflation in pursuit of various real 
objectives.  

In line with the literature on monetary policy rules, our model clearly distinguishes between 
the interest rate as the control variable and the rate of inflation as a state [static?] 
variable. However, it differs from most other models in assuming that inflation is 
instantaneously and perfectly controllable, i.e. it abstracts from lags in the transmission 
process. Nevertheless, in these models the conditional inflation forecast, which serves as 
the intermediate target of monetary policy, can be perfectly and instantaneously 
controlled. Hence, in our view the rate of inflation in our model is best viewed as the 
conditional inflation forecast when considering the implications of the model for the real 
world. In this sense the model provides an explanation for the existence of bands for the 
intermediate target of monetary policy even if this intermediate target itself is perfectly 
controllable.  
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Appendix A: Derivation of the optimal band of inaction 

Using the fact that e-δdt ≈ 1 - δdt, we can rewrite equation (12) as follows: 
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Since dx = θσdw, by Ito’s Lemma it holds that: 
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Substituting this equation in (A.1), ignoring terms which are small relative to dt and 
subsequently dividing by dt will yield the second-order differential equation (12) in the 
main text. The solution to this equation consists of the sum of a particular solution (Lp(x)) 
and the general solution of the homogeneous part: 

 xqxq
p BeAexLxL 21)()( ++=  (A.3) 

Here A and B are constants to be determined and q1 and q2 are the roots of the 
characteristic equation of the homogeneous part.  

Since the forcing term is quadratic in x, we try the following particular solution: 

 21
2
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Plugging the resulting expressions for L” (x) and L(x) in equation (12) and subsequently 
equating coefficients across equations (12) and (A.4) yields: d0 = 1/δ, d1 = 0 and d2 = 
(θ2σ2)/δ2. As in Dixit (1993), the resulting particular solution can be thought of as the 
present value of the intertemporal loss function under the condition that control is never 
exercised.17 Consequently, the effect of barriers will be fully captured by the complementary 
function. To find this function we solve the characteristic equation of the homogeneous 
part to obtain the following expression for the characteristic roots: 
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Next, regarding equation (A.3) we note that the threshold level (b) will only affect the 
constants A and B, since the band is symmetrical we therefore must have: A = B. Defining γ = 
|q| and substituting the particular solution and equation (A.5) into (A.3) yields equation 
(13) in the main text.  

Finally, we can solve for b using the analytical approximation developed by Dixit (1991). 
Dividing the VMC-condition (14) by the SPC-condition (15) yields: 
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Provided γb is sufficiently small in a manner to be explained, the LHS can be approximated by a 
fourth-order Taylor expansion around γb = 0: 
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 (A.7) 

Equating the outcome of this approximation to the RHS of equation (A.6) and solving for b 
yields equation (16) in the main text.  

Finally, we will examine under which conditions γb will be sufficiently small. Take the 
following parameter values: δ = 0.05, β =2, α = 1, C = 0.01 and σ = 0.1. Plugging these values 
into the expressions obtained for γ and b and subsequently computing the product yields: 
γb ≈ 0.5. Since higher-order terms in the expansion of the LHS of (A.6) involve terms like 
(γb)5/120 and smaller, we can conclude that the approximation is quite robust.  
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Appendix B: Derivation of the probability of an interest rate decrease and the 
expected time period till next interest rate step  

Following Dixit (1993), let Q(x) denote the probability that x will first hit the lower barrier. 
Furthermore assume that x is regulated within the band (-a,b) where a,b > 0. For any x 
within this band it will hold that: 
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Rewriting this equation and dividing by (dx)2 yields the following: 
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Taking the limit of the RHS of this equation as dx→0 we have: Q’’(x) = 0. Therefore the 
general solution for Q(x) will be: 
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where F and H are constants to be determined by examining Q(x) at the boundaries. This 
yields: 
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Solving for F and H we find: 
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Next, let T(x) denote the expected time period till the next interest rate step. For 
simplicity’s sake we assume that x is regulated within the symmetrical band (-b,b). For any 
x which is strictly in the interior of this band we have: 
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Rewriting this and dividing both sides by (dx)2 we have: 
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From equation (10) it follows that (dx)2=θ2σ2dt. Using this on the LHS of equation (B.7) 
and subsequently taking the limit for dx→0 on the RHS yields: 
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Since the RHS of this equation is a constant we try a solution of the form: 

 NMxLxxT ++= 2)(  (B.9) 

Using equation (B.8) it can be seen that L = -1/(θ2σ2). Next, from the condition that  
T(-b)=T(b)=0 we can establish: M=0 and N = b2/(θ2σ2). Plugging these values into (B.9) and 
using the expression obtained for b in equation (16) yields equation (18) in the main text.  
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Appendix C: Derivation of the Long-Run Stationary Distribution for xt 

Consider the variable xt which follows the Brownian motion described in equation (10) and 
which is regulated within the band (-a,b) where a,b > 0. For any xt ∈ (-a,b) let: 
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From this, the stationary probability density function (φ(x)) must satisfy: 
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Rewriting this and dividing by (dx)2 yields: 
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Taking the limit for dx→0 on the RHS of (C.3), it follows that φ’’(x) = 0.  

Consequently, the general solution for φ(x) will be: 

 GFxx +=)(φ  (C.4) 

where F and G are constants which can be determined by examining the behaviour of φ(x) at 
the boundaries and the resetting point. First for xt = -a + dx it will hold that: 
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From this we can conclude: 
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Furthermore, since φ(-a+2dx) will satisfy equation (C.1), it can easily be shown that for 
n≥1 and for –a < x < 0, it holds that: 

 )()( dxanndxa +−=+− φφ  (C.7) 

Similarly, for the upper boundary b it can be shown that:  
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where the second equation holds for for m ≥ 1 and 0 < x < b. From equations (C.4), (C.7) and 
(C.8) we can see that φ(x) will be linearly increasing in x for x ∈ [-a,0) and linearly 
decreasing in x for x ∈ (0,b]. It remains to examine φ(0) for which it holds that: 
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Rearranging and taking limits (see also Bertola and Caballero (1990)) we can write: 
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From this equation it follows that while φ(x) is continuous at x=0 (this is ensured by (C.9)), 
it is not differentiable at this point since the RHS and the LHS derivatives at x=0 have 
opposite signs. 

Consequently, the Brownian motion process for xt subject to barriers –a and b will give rise 
to a triangular steady-state probability density function the support of which is determined 
by the control thresholds (see Figure 2). 

Finally, φ(0) can be determined by the requirement that Ι-ab φ(x) dx = 1. From Figure 2 it 
can be seen that this boils down to the condition that ½(a+b) φ(0) =1. Using this, we obtain 
equation (19) in the main text.  
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Appendix D: Proof of Propositions 

Proposition 2:  

The sign of the partial derivatives of | iτ - i0 | with respect to C, β and σ can be 
unambiguously inferred from equation (17). As for the parameter α we can compute: 

 
2
30

)(2

)6)(23(

2
3

2

4
1

2
0

>
<

<
>

−

−
=

∂
−∂

a
if

aa

Caiir β

β

σβ
α

 (D.1) 

Proposition 3:  

From equation (18) in the main text we can compute: 
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From this it can be seen that for T(x) to be increasing in β and decreasing in α and σ we 
need to have: 
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Proposition 4: 

From equation (19) in the main text we can compute (note that x ∈(-a, b)): 
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a and b (together with two constants of integration) are determined by the two Value 
Matching Conditions: L(-a)-L(0) = Cl , L(b)-L(0) = Ch and the two Smooth Pasting 
Conditions: L’(-a) = L’(b) = 0. From these it can easily be shown that ∂b/∂Ch > 0 and that 
∂a/∂Cl > 0 (see Dixit (1993)). Consequently we have: ∂Q(x)/∂Ch > 0 and ∂Q(x)/∂Cl < 0.  

Proposition 5: 

To prove that πe is increasing in Ch and decreasing in Cl it is sufficient to prove that this 
holds for E(x). From equation (20) we have: 
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Using the results obtained in the proof of Proposition 4 then yields the proof of this 
proposition. 

 

____________________________ 
1 For a formal treatment of this point see Svensson (1997c).  
2 For useful surveys of this phenomenon see Rudebusch (1995), Goodhart (1996) and 
Bhundia and Yates (1997).  
3 Formally, let F be the information set available to private agents containing the 
information they have about optimal monetary policy and let g(π|F) bet the long run 
probability density function of inflation conditional on this information set. Then we 

have: πππππ dFgFEe )|()|( ∫
∞

∞−

==  

4 In reality, the actual future rate of inflation will of course never be under perfect control 
by the central bank. However, Svensson (1997) has shown that inflation targeting implies 
that the conditional forecast of inflation becomes the intermediate target of monetary 
policy. The latter can of course be perfectly and instantaneously controlled by the central 
bank.  
5 According to Huizinga and Eiffinger (1999) there is also a strategic argument for not 
changing the monetary policy stance in response to every (supply) shock, since this will 
lower inflationary expectations.  
6 Following Svensson (1997), this equality is simply the optimal (intermediate) target rule.  
7 As we will show later, even in the presence of menu costs this rule describes the long-run 
behaviour of the interest rate. Since the demand shock follows a continuous-time random 
walk and since inflation will be stationary as a result of optimal monetary policy it follows 
that both the nominal and the ex post real interest rate will be non-stationary.  
8 When x = g(ε), where ε follows a driftless Brownian (see equation (3)),  it will hold that: 

dwgdtgdx σεσε )()(
2
1 '2'' +⎥⎦

⎤
⎢⎣
⎡=  

9 Note that this condition proves that barriers will reduce the value of the loss function 
(relative to the value obtained in the situation where control is never exercised) since 
equation (16) will only hold for A < 0.  
10 Recent examples are Rudebusch (1995), Balduzzi, Berola and Foresi (1997) and Balduzzi, 
Bertola, Foresi and Klapper (1998). 
11 This formulation abstracts from interest rate smoothing considerations since these will 
induce a relatively high probability of a target change in the same direction during the first 
month after a target change (see Rudebusch (1995)). 
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12 Rudebusch (1995) shows that in reality the size of the interest rate step is drawn from a 
discrete probability distribution.  
13 This would imply: 
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where tk denotes the instants where the interest rate is raised and the central bank incurs a 
cost equal to Ch while tm denotes the instants in which it is lowered, yielding a cost equal to 
Cl. In that case we have two Value Matching Conditions (L(-a)-L(0)=Cl and (L(b)-L(0)=Ch) 
and two Smooth Pasting Conditions (L’(-a)=L’(b)=0) to determine the two barriers a and b 
and the two constants of integration. It can easily be shown that b’(Ch) > 0 and that a’ (Cl) > 
0 and therefore Ch > Cl implies b > a.  
14 Of course, the probability of an interest rate increase at the next step is simply the 
complementary probability: P(x) = 1 – Q(x) 
15 For a survey see Cukierman (1992, Chs. 2-7) 
16 Of course, if the central bank were to try and take advantage of this relationship it would 
break down as a result of the Lucas critique. In other words, this stable Phillips curve would 
fall victim to Goodhart’s law that “any statistical regularity will tend to collapse once 
pressure is placed upon it for control purposes…” (Goodhart (1989)) 
17 This can easily be seen by plugging the particular solution into equation (12). The reason 
for this result is that the Bellman equation (11) is valid for x ∈ (-b,b), which is the region in 
which control is never exercised. 
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