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Orientation
In the study and practice of financial risk management, the value at risk (VAR) and expected 
shortfall (ES) metrics are the most widely used risk measures. Proper estimation of VAR and ES is 
necessary in that they need to accurately capture the level of risk exposure (downside and upside 
risk) that the firm or portfolio is exposed to. If a business entity overestimates the risk level, then 
the firm will unnecessarily set aside capital to cover the financial risk when the capital could have 
been utilised elsewhere. Investors and risk analysts have become more concerned with events 
occurring under extreme market conditions.

Extreme value theory (EVT) application is found in many fields where extreme events may 
occur, including hydrology (Katz, Parlange & Naveau 2002), insurance (McNeil 1997) and finance 
(Gencay & Selçuk 2004). Extreme value theory provides a solid framework for estimating the 
behaviour of extreme events and performs better than other approaches in terms of predicting 
unexpected extreme movements as it focusses on the tails of the distribution (Longin 2000). In this 
study, EVT is used to estimate financial risk measure in the South African Financial Index. Extreme 
value theory provides appropriate distributions to capture extreme events. The generalised Pareto 
distribution (GPD) of the EVT is used to estimate financial risk measures (downside and upside 
risk) in the form of VAR and ES for the index. The measures are very useful because they are good 
at assessing the likelihood and impact of a financial crisis.

Orientation: In light of the global financial instabilities, investors and risk analysts need 
extreme risk management tools to help them accurately monitor and reduce market exposure 
in an investment portfolio.

Research purpose: The main aim of the study was to apply extreme value theory results to 
quantify the extreme downside risk and upside risk of the South African Financial Index 
(J580).

Motivation for the study: Financial markets have been characterised by significant instabilities 
caused by occurrence of extreme events. This means there is a need to develop proper risk 
management models that can accurately assess these extreme events.

Research approach, design and method: The peak over threshold approach was used to 
obtain the excess returns over the threshold. The generalised Pareto distribution (GPD) 
was fitted to the excess returns over the threshold to estimate the parameters, which were 
used to quantify the downside and upside risk in the form of value at risk and expected 
shortfall.

Main findings: The findings indicate that the upside risk of the Financial Index (J580) 
outweighs the downside risk.

Practical/managerial implications: These findings would be important for hedging purposes, 
investment decision-making and help risk analysts to monitor the exposure of market risk and 
protect their investment portfolios accordingly.

Contribution/value-add: This article will contribute to empirical evidence of the research into 
the behaviour of the extreme returns on the Johannesburg Stock Exchange. The GPD model 
formulated will be used to assess tail-related risk.

Keywords: extreme value theory; peak over threshold; generalised Pareto distribution; 
financial index (J580); value at risk; expected shortfall; downside risk; upside risk.
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In the last two decades, the phenomenon of the occurrence 
of rare extreme events seems to be more apparent in 
financial markets around the world, including the 
South African market. The markets have been characterised 
by significant instabilities. This means there is a need to 
develop proper risk management models that can assess 
both the probabilities of risky events in normal market 
conditions and also rare financial events, like the global 
financial crisis of 2007–2008. The behaviour of the tails of 
the South African Financial Index (J580) is considered, with 
a specific focus on the use of GPD to estimate tail-related 
risk with an aim of providing a modern risk management 
model that will help in determining the downside risk and 
upside risk, in the form of VAR and ES.

Research purpose and objectives
The objectives in this article are therefore as follows:

• to fit the GPD model to the monthly J580 Index data
• to estimate downside risk and upside risk using the VAR 

and ES for different levels of statistical confidence.

This study focusses on modelling extreme events using the 
GPD and contributes to empirical evidence on research into 
the behaviour of the extreme financial returns of the J580 
Index on the Johannesburg Stock Exchange (JSE) and will 
help risk analysts to monitor the exposure of market risk. 
This study is organised as follows: the next section presents a 
literature review, followed by research models. Next the 
results and discussion are provided and finally the conclusion 
and areas for further study.

Literature review
The literature is full of examples of financial risk associated 
with rare but high impact events: De Dieu, Mwita and 
Mung’atu (2014), Vee, Gonpot and Sookia (2014), Kiragu and 
Mung’atu (2016), Nortey, Asare and Mettle (2015) and many 
others. Magnou (2016), Vladimir et al. (2016) and Zhaoa et al. 
(2010) are discussed in this study. Magnou (2016) modelled 
financial risk in the Uruguayan Pension Fund using EVT. 
The researcher assessed the probability of rare and extreme 
events as an important issue in the risk management of 
financial portfolios. In this study, the researcher used the 
peak over threshold (POT) approach of the GPD model, 
which gives information on tail distribution of financial 
losses. The researcher concluded that the GPD model is 
useful for assessing the size of extreme events. Value at 
risk approaches, based on the assumption of the normal 
distribution area, overestimate low percentiles (because of 
the smaller tail of the normal distribution) and underestimate 
high percentiles (because of heavy tails in the data set, 
which is not accommodated by a normal distribution). The 
researcher concluded that the GPD model is useful for 
assessing the size of extreme events and is easy to implement.

Vladimir et al. (2016) modelled the Russian Stock Market 
Index (RTSI) by an application of GPD of EVT. In their study, 
they utilised the GPD, which gives information on the tail 

distribution of financial returns. The authors applied the 
GPD method to RTSI daily losses from 1995 to 2009. The RTSI 
is a total index of the 50 largest Russian stocks. Vladimir 
et al. (2016) focussed on the assessment of tail-related risk 
measure. The authors concluded that the GPD method fits 
the tail distribution of financial return series and estimates 
extreme financial risk more accurately compared with the 
traditional method of risk estimation, which assumes the 
normal distribution. The authors also recalculated VAR 
using the GPD model and concluded that EVT is the most 
appropriate approach.

Zhaoa et al. (2010) used EVT for forecasting the impact of 
the market crisis in New Zealand. The authors used EVT 
to quantify VAR, which was then used to estimate the 
probability of the impact of the financial crisis. As in the 
study by Vladimir et al. (2016), the authors used daily 
returns data (2001–2008) of the Citigroup and S&P 100 Index. 
The authors used the GPD model, which models the tail 
distribution of financial returns for both losses and gains. 
Zhaoa et al. (2010) concluded that the GPD method is 
suitable for estimating the probability of impact of a financial 
crisis using stock and index returns.

There are numerous studies that have analysed extreme 
events in the financial markets resulting from the currency 
crises, equity market turmoil and credit defaults, including 
Rydell (2013), Chege, Mungat’u and Ngesa (2016) and 
Omari, Mwita and Waititu (2017). Loretan and Phillips 
(1994), Gilli and Këllezi (2006) and Onour (2010) discussed 
the behaviour of tail distributions of a financial return series 
using GPD. The potential of EVT in risk management was 
discussed by Diebold et al. (1998). This study will fill the 
gap in the literature regarding the development and 
formulation of extreme risk management models that 
accurately capture the level of risk exposure and hedge 
against an investment risk on the South African Equity 
Market using the J580 Index.

Research models
Extreme value theory best describes the extreme value 
distributions that are associated with financial returns. It 
provides a model that gives guidance on the kind of 
distributions that should be selected so that the parameters 
are estimated, which are then used to calculate VAR and ES.

The block maxima (BM) approach and the POT approach 
are the two main methods under the EVT model. The BM 
approach models data by fitting the generalised extreme 
value distribution to a set of block maxima data. According 
to Gilli and Këllezi (2006), when one block contains more 
extreme data values than another, the use of the POT 
approach for modelling the extreme events is then preferred. 
The POT approach is the most preferred compared to the BM 
approach because it uses most of the data efficiently and 
produces more reliable results (McNeil 1997). In this study, 
the POT approach was adopted.
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Generalised Pareto distribution and peak 
over threshold
According Pickands (1975) and Balkema and deHaan (1974), 
the GPD is defined by the following:
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Given that x > 0 when ξ ≥ 0 and 0 ≤ x ≤ – β/ξ when ξ < 0 and 
β > 0, Fξ,β (x) is defined as the GPD with the shape parameter 
or the tail index ξ, a scale parameter β and a threshold u. The 
value of the shape parameter ξ shows how heavy the tail of 
the distribution is, with a large value indicating a very heavy 
tail. According to Gilli and Këllezi (2006) distributions with a 
tail of ξ ≥ 0 are generally suitable for modelling financial 
return series. The density function is given as follows:
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Peak over threshold
According to Chen and Giles (2015) the POT approach is a 
suitable method for analysing extreme risk as it offers a 
parametric form for tail distribution. The POT approach uses 
exceedances above a specified high threshold. The GPD is 
fitted to the exceedances above the threshold. The parameters 
are estimated by the maximum likelihood estimate (MLE) 
method. Sample mean excess plot, shape parameter and 
Pareto Quantile-Quantile (QQ) plot are the methods used to 
help in the selection of the threshold u (Chen & Giles 2015) 
and are adopted in this study.

Excess distribution
For a random variable X with a density function F, the excess 
distribution above a certain threshold u is defined by the 
following:

= − ≤ >( ) P( )F x X u x X uu  [Eqn 3]

where x represents the size of exceedances over u. If F is 
denoted as the distribution function for X then we may write 
the following:
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Fu is the conditional excess distribution function.

Risk measures (downside and upside risk)
In this study the extreme risk (downside and upside risk) is 
evaluated for both long and short positions held by investors. 
The two financial risk measures, namely VAR and ES, are 
considered.

Value at risk is defined as the maximum amount that will 
be lost over a particular holding period with a particular 
degree of confidence. It is generally defined as the sufficient 
capital to cover the losses from a portfolio over a holding 
period of a fixed number of days. Another measure of 
downside risk or the tail conditional expectation that 
estimates the potential size of the loss exceeding VAR is the 
ES. Value at risk does not capture all aspects of market risks, 
such as subadditivity. Expected shortfall is a better measure 
of risk that is subadditive and also informs about the 
likely magnitude of exceedances. Expected shortfall is the 
expected size of return that exceeds VAR for a probability 
level p.

The following from Ren and Giles (2010) gives an estimate of 
the statistical cumulative distribution function.
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where the total sample size is n, and Nu is the number of 
observations above the chosen threshold.

The inverse of Equation 5 (value of x in Equation 5) with a 
probability p gives the VAR:
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For ξ < 1 the ES is given by the following:

− ξ
+ σ − ξ

− ξ
p=ES
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up  [Eqn 7]

However, VAR is not a coherent risk measure; in simple 
terms coherence implies that when loss distributions are 
altered or combined, the risk measures used still behave 
sensibly.

Threshold and parameter estimation
The mean excess plot
In order to adopt the POT approach, the choice of the 
threshold is critically important to the modelling of the tails 
of the distribution. The sample mean excess live plot is a 
graphical method that helps in the estimation of the threshold 
u. From the mean excess function, the sample excess function, 
e(u), is estimated and is defined as follows:

= − > = δ + ξ
− ξ

δ + ξ >( ) E( )
1

, u 0e u X u X u u  [Eqn 8]

This function is expected to be linear and this property of 
linearity is then used as a basis for the estimation of u.
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The Hill plot
If x1 > x2 >… … … > xn is the ordered statistic of the 
independent and identically distributed random variables, 
using k + 1 ordered statistics the Hill estimator is defined by 
the following:

∑ξ = α = −−

=

�� 11

1k
lnx lnx

i

k

in kn  [Eqn 9]

where k = k(n) → ∞ is upper order statistics (the number of 
exceedances), n is the sample size and the tail index, α = 1/ξ. 
From this graph the threshold u is estimated from the stable 
areas of the tail index in the graph.

Parameter estimation using maximum likelihood 
estimation method
The parameters of the GPD are estimated using the MLE 
method. According to Chege et al. (2016), the joint density 
function of a sample size n that is independent and identically 
distributed is given as follows:

θ = θ θ θx x x x x xf( , ... ... ... ) f( ) . f ( ) ... ... ...f( )1 2 1 2n n  [Eqn 10]

where θ = (ξ, β) are the parameters of the model f(xi | θ). For 
the known observed variables, the parameters are given by 
θ = (ξ, β) for the given threshold u to be selected. The likelihood 
function is then given by the following:
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and the logarithmic likelihood function is given by the 
following:

∑θ = θ
=

ln x x x L( , ... ... ... ) f( )1 2 1
xn i

n

i  [Eqn 12]

The set βθ = ξ ��� ( , ) of the estimated parameters maximises the 
likelihood function, Equation 11 or 12.

Results and discussion
In this section, data analysis and findings are discussed. 
The data analysis is performed in the R programming 
environment, using the packages fExtremes, extRemes, evir 
and ismev. This study applied GPD of EVT in analysing 
extreme returns of the J580 Index to obtain shape and scale 
parameters that are used to estimate the upside and 
downside risk.

Data
The data span from 1995 to 2018, making a total of 272 
monthly index observations of the J580 Index from the 
website https://expert.inetbfa.com. The aim of the study is 
to model the tail distribution of the J580 Index and estimate 
the tail-related risk.

A logarithmic transformation was performed on the raw data 
to obtain logarithmic index returns as follows:

=
−

ln
1

r M
Mt

t

t
 [Eqn 13]

where rt represents the monthly log returns on month t, Mt 
represents the monthly returns in month t and ln denotes the 
natural logarithm.

The results for both the right and left tails of the return 
distribution are generated. The right tail (negative returns) 
represents the downside risk and the left tail (positive 
returns) represents the upside risk of the empirical return 
distribution.

Basic statistics
The characteristics of a financial time series such as positive 
skewness and a large positive kurtosis were found present in 
this data set. Table 1 shows that monthly J580 Index returns 
have a skewness of 2.194 and a high kurtosis of 19.440, 
implying that the data is fat tailed (Omari et al. 2017). The 
mean is –0.835 with a small standard deviation of 0.06042. 
The minimum and maximum values are far apart, implying 
the data consists of extreme values.

Testing for normality, stationarity and  
auto-correlation in the data set
The p = 6.903e-08 was obtained using the Anderson Darling 
test, which is less than 0.05: we therefore rejected the 
hypothesis of normality and concluded that the J580 Index 
return series is not normally distributed.

A p-value smaller than 0.01 was obtained using the 
augmented Dickey-Fuller test; therefore the null hypothesis 
of non-stationarity was rejected, and it was concluded that 
the data is stationary.

The Box Ljung (lag = 10) test revealed there was no presence 
of significant auto-correlation in the returns series because 
the auto-correlations were almost zero, indicating that the 
return series is independent and identically distributed.

Testing for heteroscedasticity
The Lagrangian multiplier test results indicated no presence of 
significant autoregressive conditional heteroscedastic (ARCH) 
effects in the J580 return series (chi-square = 0.1155, df = 12, 
p = 1). Auto-correlation and conditional heteroscedasticity 

TABLE 1: Monthly log returns of the J580 Index descriptive statistics.
Description Values

Number of observations 271.00000
Mean -0.83500
Median -0.01010
Maximum 0.51195
Minimum -0.21652
Variance 0.36512
Standard deviation 0.06042
Skewness 2.19400
Kurtosis 19.44000

https://www.jefjournal.org.za�
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tests showed that there is no existence of auto-correlation and 
no persistence of variance in the standardised series and 
squared standardised series, therefore no evidence of volatility 
clustering in the return series.

Determination of the threshold
In this study, both downside and upside risk measures were 
of interest. Therefore the negative returns were separated 
from positive returns and modelled separately using the GPD 
distribution. The upside and downside risks corresponding to 
the VAR and ES risk measures were estimated. The threshold 
for both the positive and negative returns was determined 
using the Pareto QQ plot, the Hill plot and the mean residual 
live plot. These three methods were used to select a suitably 
high threshold to fit the GPD to the values in excess of the 
threshold.

In Figure 1, a tangent line to the data points in the Pareto QQ 
plot will aid in determining the threshold. The line crosses 
the y-axis at about -3.5, implying that the threshold is 0.03 
(the exponent of -3.5 is 0.03).

A Pareto QQ diagram for determining the threshold for 
negative returns losses (right tail) was also used. It was found 
that the threshold is 0.045.

The optimal threshold selected from a relatively steady area 
on the Hill plot should provide sufficient exceedances to the 
fitted GPD. In Figure 2 the order statistics range in which we 
expect the threshold is 57–64. This confirms a threshold 
estimate of 0.03.

The Hill plot for the right tail of the return series was also 
determined. The order statistics range in which we expect the 
threshold is 55–65, in which the threshold is then determined 
to be 0.045.

According to literature, the mean residual live plot indicates 
that the thresholds are supposed to lie in a particular linear 
positive slope range on the plot.

The threshold is confirmed to be 0.045 in Figure 3 for the 
right tail (negative returns). The graph becomes unstable 
beyond 0.07.

Threshold values of 0.03 for the left tail (positive returns) 
were determined in relation to the Pareto QQ plot, Hill plot 
and mean residual live plot.

The left tail goodness-of-fit plots for the GPD model are 
shown in Figure 4.

The probability–probability (PP) and quantile–quantile (QQ) 
plots do not move away significantly from the straight line; 
the density plots confirms the GPD provides a good fit to the 
exceedances in Figure 4. There are no points outside the 
confidence limits for the return level plots, indicating a good 
fit for the left tail.

The goodness-of-fit plots for the right tail (negative returns) 
also indicated a good fit.

Fitting the generalised Pareto distribution using 
the maximum likelihood estimate method
The GPD is fitted to the excesses returns over the threshold to 
estimate the parameters that will be used to estimate VAR 
and ES. Table 2 shows the shape and the scale parameters 
from the fitted GPD and their corresponding standard errors.

The shape and the scale parameters of the right tail are 
ξ = −0.06586863 and σ = 0.110349819. The shape parameter 
ξ < 0 means that the right tail is shorter than the tail of the 
normal distribution, which means that the probability of 
extreme losses because of a long position on the index is 
minimal. The right tail follows the Weibull class distribution 
because ξ < 0, and it has a finite upper bound, indicating an 
absolute maximum.

The shape and scale parameters for the left tail are ξ = 0.28252147 
and σ = 0.32166984. A shape parameter ξ > 0 means that the left 
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tail has heavier tails than the normal distribution, which can 
result in extreme gains occurring. The left tail follows the 
Fretchet family of distributions. The positive shape parameter is 
of interest in financial risk management.

Estimating risk measures 
(downside risk and upside risk)
Using the shape and scale parameter estimates obtained in 
Table 2, the VAR and ES are estimated. In this study we 
considered the right and left tails of the return distribution. 
The right tail represents losses for an investor with a long 
position on the index, and the left tail represents losses for an 
investor, being short on the index.

In this study negative returns and positive returns are used 
to determine the downside risk and upside risk respectively. 
Value at risk and ES are used to estimate the downside risk 
and upside risk (Table 3). Value at risk estimates risk exposure 
and ES estimates the potential size of loss exceeding VAR at a 
given probability level. The expected monthly gain will not 
exceed 15.66%, and if it does the gain will be 24.39% at the 
95% level of confidence. The expected monthly loss will not 
exceed 14.31%, and if it does the loss will be 17.10% at the 
95% level of significance. The interpretation is the same at the 
99% and 99.5% levels of confidence. These findings imply 
that the upside risk of the J580 Index outweighs the downside 
risk. Therefore, it can help investors and risk managers to 
monitor the exposure of market risk and protect their 
portfolios accordingly.

Conclusion
In this study, EVT was used to model the tail behaviour of the J580 
Index for the right tail and the left tail. The POT method was used 
to estimate the threshold using the Pareto QQ plot, Hills plot and 
mean residual live plot. The POT method was favoured as it 
tends to utilise data more efficiently. The MLE method was used 
to estimate the parameters. Extreme tail risk measures were 
estimated at relatively high quantiles at the 95%, 99% and 99.5% 
confidence intervals. The VAR and ES are used for analysing the 
extent of potential extreme downside and upside risk of the J580 
Index. These findings highlight the importance of the GPD in 
fitting appropriately the tails of financial time series data 
characterised by extreme events. The conclusion is that the upside 
risk of the J580 Index outweighs the downside risk. For investors 
and risk analysts, these risk measures would be important for 
hedging purposes and investment decision-making.

For areas of further study the authors recommend the 
modelling of extreme value dependence using copula 
functions.

Acknowledgements
Competing interests
The authors declare that they have no financial or personal 
relationships that may have inappropriately influenced them 
in writing this article.

M
od

el

Empirical

0.2

0 0.2 0.4 0.6 0.8 1.0

1.0

Model

Em
pi

ric
al

0.1

0.05 0.10 0.15 0.20

0.5

0

0

Index returns (x)

f(x
)

0.1 0.2 0.3 0.4 0.5

20

0

1e-01 1e+01

Return period (years)

Re
tu

rn
 le

ve
l

1e+03

15

a b

c d

FIGURE 4: (a) Probability, (b) quantile, (c) return level and (d) density plots for the left tail (positive returns, representing the gains).

TABLE 2: Parameter estimation using maximum likelihood estimate method for 
J580 Index.
Variables Right tail (negative returns) Left tail – (positive returns)

Threshold u = 0.045 u = 0.030
Shape parameter -0.06586863 0.28252147
Standard error 0.110349819 0.153564442
Scale parameter 0.03609992 0.02688576
Standard error 0.006108772 0.005400842

TABLE 3: Risk measures of value at risk and expected shortfall for the right tail 
and the left tail.
Probability Value at risk Expected shortfall

Measures of risk – left tail distribution – upside risk (positive returns or gains)
0.950 0.1566339 0.2438927
0.990 0.2842274 0.4216590
0.995 0.3597479 0.5268759
Measures of risk – right tail distribution – downside risk (negative returns or loss)
0.950 0.1431468 0.1709593
0.990 0.1884150 0.2134345
0.995 0.2064827 0.2303874
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