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Introduction
The importance of optimal investment allocations and judicious historical data management are 
discussed in this article. These are everyday issues that financial operators, financial managers, 
financial planners and financial regulators have been addressing for decades. A considerable 
body of work exists on optimal investment allocations (also called portfolio optimisation, 
portfolio selection, etc.), which focuses on specific hypotheses and assumptions. Examples are 
provided in the referenced papers (Bielecki et al. 2003; Li & Wan-Lung 2000; Lim 2004; Lim & 
Zhou 2002; Markowitz 1952; Zhou & Li 1999; Xia 2005; Xun & Zhou 2006). Most of the examples 
deal with single or short-period cases, which generally require continuous risk management for 
investment allocations.

Even when financial data describing features of portfolio assets are used to optimise a portfolio 
over a specified period, such data may impact the future. Thus, this data may be needed in some 
way to predict future financial data of the same type, as the historical data may contain relevant 
hidden or implicit information. Autoregressive (AR) models are one of the tools suitable to 
forecasting and prediction of data.

Autoregressive models are used to study the correlation between various random variables 
constituting a time series. They are extensively applied in finance, which is the reason why AR 
models for financial data are critical. The use of these models can facilitate the investigation 
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of financial systems by revealing meaningful and useful 
information about financial processes. For example, AR 
models can be used to predict asset prices. This article also 
proposes the use of AR models to forecast expected profit 
vectors for financial assets, as well as the covariance matrices 
related to asset profits.

Certain mathematical, statistical and econometric models 
for mean forecasting, as well as statistical and econometric 
models for volatility, covariance, etc., are available. This 
article notes that every element of the covariance matrix is an 
expected value and can thus be forecast by using a mean 
forecasting model. Consequently, this article deals with the 
computation of optimal investment allocations to minimise 
risk for a specified minimum level of profit.

Markowitz was one of the first researchers to propose a 
model for solving single-period portfolio optimisation 
problems (Markowitz 1952; Zenios 1993). After further 
refinement and extension, his model contributed to the 
development of a method for quantifying risk by using 
variance, which enables investors to maximise profit for a 
given threshold of the risk.

Merton (1972) uses this model to compute an analytic 
solution when the covariance matrix is positive, and short-
selling is allowed. The task of selecting an optimal investment 
is not easy, especially when dealing with a large set of 
assets while aiming to manage risk. One of the critical 
approaches involves designing reliable mathematical models 
that describe the problem precisely and accurately, and then 
computing analytical or numerical solutions to obtain 
associated computational simulations.

Problem formulation
Given a long time horizon [0,T] and N assets i = 1,···, N, such 
that for every asset i the profit is a random variable with an 
expected value equal to µi, the aim is to compute the optimal 
investment allocation, iω *, i = 1, …, N, with 0 ≤ iω * ≤ 1, to drive 
the portfolio in the period [0, T] and fulfil the following 
conditions:

∑∑ω ω ω σ ω( )… =ω ω…
==

minimise , , 1
2

 , , 1  
111

F N i ij j
j

N

i

N

N
 [Eqn 1]

Subject to:

∑ µ µω ≥
=

   
1

i i p
i

N
 [Eqn 2]

∑ ω =
=

 1
1

i
i

N
 [Eqn 3]

where ∀i, Ri(t) is the profit of asset i at time t; µi(t) is the 
expected value of profit Ri(t); σi(t) is the volatility of Ri(t); µp(t) 
is the specified minimum level for the portfolio expected rate 
profit; and σij(t)=cov(Ri(t), Rj(t)) is the covariance between the 
profit of asset i and the profit of asset j.

The above problem can be reformulated as a sequence of 
the following equality constrained quadratic optimisation 
problems:

∑∑ω ω ω σ ω( )… =ω ω…
==

minimise , , 1
2

 , , 1  
111

F N i ij j
j

N

i

N

N
 [Eqn 4]

Subject to:

∑ µ ω µ µ=
=

 ,    
1

Qi i p p
i

N
 [Eqn 5]

i
i

N∑ ω =
=

 1
1

 [Eqn 6]

where µp, as stated in [Eqn 5], is a variable that can take many 
values. For every given value of µp, the corresponding 
optimal investment allocations, the minimum risk σp and the 
point (µp, σp) must be computed to give a solution curve 
expressing the trade-off between minimum risk and expected 
profit. In matrix form, the above problem sequence can be 
expressed as:
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where μ = (μ1 μ2 … μN) is a real-value N-dimensional vector, 
and Σ = (σij) 1 ≤ i, j ≤ N is a real symmetric matrix. Various 
methods are available to solve the problem: the interior 
point method, the active set method, the augmented 
Lagrangian method, the conjugate gradient method, the 
gradient projection method, the extension of the simplex 
algorithm method, the simulated annealing method, 
the particle swarm optimisation method, the genetic 
algorithm method, the controlled random search algorithm 
method, the genetic programming method and the Newton’s 
method.

For the case in which Σ is positive definite, the above 
problem becomes a special case of the more general field of 
convex optimisation. By applying the Lagrangian method, 
the problem sequence (4)–(6) can be reformulated as the 
computation of ω ω ω( )…, , ,1

*
2
* *

N  such that the following 
condition is satisfied:

∑∑
ω ω α α

ω ω α α

( )… =

σ − −

ω ω…

==

minimise , , , ,

1
2

 1 2

, , 1 1 2

1 2
11

1
L

C C

N

i ij j
j

N

i

N

N

 [Eqn 9]

where:
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Without loss of generality, consider a fixed integer i, then the 
derived first-order necessary conditions for optimality are as 
follows:
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As an example, a hypothetical data set (containing 10 time 
series on financial asset profits for a period of 12 months, 
generated randomly using Matlab Software) has been 
processed according to the optimal investment allocations, and 
the trade-off between risk and profit is given in Figure 1, which, 
as expected, shows that profit is an increasing function of risk.

A further data set is presented in Table 1, which contains 10 
risky financial asset profits for a period of 12 months. For 
each i, Profit i is the profit of the financial asset i. From 
Table 1, a vector of 10 expected profits μ = (μ1 μ2 … μ10) and a 

covariance matrix Σ = (σij)1 ≤ i, j ≤ N are computed to serve as 
inputs for the problem. The associated results are given in 
Tables 2 and 3, respectively.

The optimal allocations in Table 3 show that the investor does 
not need to allocate all the money they have because for Asset 
1 and Asset 4 the optimal allocation is 0.

As for the first example, additional examples were considered 
to support the study of the trade-off between the portfolio 
minimum risk and maximum expected profit. The related 
computational simulations are illustrated by Figures 2 and 3.

For long-period investment allocations, the first-period 
investment allocations problem must be solved. Then the 
historical data (the expected rate-of-profit vector and the 
covariance matrix) can be forecast to build a new expected 
rate-of-profit vector and a new covariance matrix for the 
second period.

At every period other than the second period, the expected 
rate-of-profit vector and the covariance matrix are obtained 
by forecasting the expected rate of profit and the covariance 
matrix for the previous period.

Many techniques exist for forecasting data. Such techniques 
are described by autoregressive (AR) models, moving 
average (MA) models and autoregressive moving average 
(ARMA) models. These are all captured by autoregressive 
integrated moving average (ARIMA) models. This article 
uses AR to obtain the asset expected rate-of-profit vector 
μ = (μ1 μ2 … μN) and the covariance matrix Σ = (σij)1 ≤ i, j ≤ N for 
each period.

TABLE 3: Ten optimal investment allocations.
Assets Optimal allocations (%)

Asset 1 0

Asset 2 19.6

Asset 3 32.9

Asset 4 0

Asset 5 3.1

Asset 6 2.1

Asset 7 17.5

Asset 8 17.5

Asset 9 3.1

Asset 10 3.1

TABLE 2: Minimum expected profit and optimal (minimum) portfolio risk.
Minimum level of expected portfolio profit Portfolio minimum risk

0.45 1.9527e-005

TABLE 1: Twelve-month historical asset profits (Inputs).
Months Profit1 Profit2 Profit3 Profit4 Profit5 Profit6 Profit7 Profit8 Profit9 Profit10

January 2017 0.27 0.41 0.42 0.12 0.26 0.33 0.39 0.18 0.31 0.58

February 2017 0.46 0.50 0.34 0.08 0.20 0.36 0.35 0.25 0.37 0.77

March 2017 0.23 0.41 0.34 0.12 0.32 0.37 0.36 0.18 0.36 0.75

April 2017 0.26 0.53 0.38 0.13 0.21 0.32 0.24 0.29 0.53 0.63

May 2017 0.35 0.36 0.36 0.12 0.31 0.40 0.23 0.28 0.51 0.72

June 2017 0.28 0.48 0.42 0.11 0.35 0.25 0.36 0.30 0.37 0.67

July 2017 0.23 0.44 0.41 0.13 0.27 0.36 0.25 0.15 0.50 0.56

August 2017 0.42 0.38 0.35 0.14 0.27 0.38 0.39 0.26 0.56 0.57

September 2017 0.44 0.36 0.50 0.11 0.21 0.31 0.36 0.21 0.46 0.60

October 2017 0.37 0.31 0.43 0.12 0.30 0.42 0.34 0.18 0.58 0.64

November 2017 0.34 0.50 0.48 0.12 0.28 0.29 0.27 0.19 0.54 0.62

December 2017 0.28 0.48 0.42 0.11 0.27 0.33 0.24 0.23 0.45 0.50

FIGURE 1: Plot of portfolio return as a function of portfolio risk.
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The following section illustrates the use of forecasting from 
one period to another.

Input data forecasting for 
investment allocations
This section deals with deriving future expected rate-  
of-profit vectors and future covariance matrices for the 
portfolio assets of the previous period. The second expected 
rate-of-profit vector and the covariance matrix are derived 
from those of the first period. AR models, which are widely 
used in finance, are applied in this derivation. At every 
period other than the second period, the expected rate-of-
profit vector, as well as the expected covariance matrix, is 
obtained from the estimated rate-of-profit vector and the 
estimated covariance matrix of the previous period.

The first period uses the expected rate-of-profit vector and 
the covariance matrix for the asset profits obtained from 
given historical data. The second period applies first-order 
AR modelling to the first period expected rate-of-profit 

vector and covariance matrix to obtain the second period 
expected rate-of-profit vector and covariance matrix and 
then finally to obtain the second-period investment 
allocations. The third period applies second-order AR 
modelling simultaneously to the first and second period 
expected rate-of-profit vectors, and covariance matrices, to 
obtain the third-period expected rate-of-profit vector and 
covariance matrix and then finally to obtain the third-period 
investment allocations.

In general, the kth period simultaneously applies (k-1)-order 
AR modelling to all the previous (k-1)-period expected rate-
of-profit vectors and covariance matrices to obtain the kth 
period expected rate-of-profit vector and covariance matrix 
and then to obtain the kth period investment allocations. 
For every period, the application of the AR model can be 
performed as follows:

• Define the AR order.
• Estimate the unknown AR model parameters by means of 

Yule–Walker approach.
• Plot the time series associated with the AR model results.

Models
The AR models that are used to sequentially forecast the 
financial assets rate-of-profit vectors and the covariance 
matrices characteristically generate systems of finite difference 
equations, which can be reformulated as an algebraic linear 
system of equations where the unknowns are the parameters. 
The equations may be simplified by reducing the financial 
data time series to a zero mean after having subtracted the 
sample mean.

Thus, the task can be done with a mean-adjusted series. The 
series is called an AR model. For this article, AR models may 
define the time series of expected rate-of-profit vectors and 
the time series of financial assets covariance matrices as 
functions of their past values. The order of the AR model will 
reveal the number of past values that are involved. An 
investment allocations period may typically involve the 
previous period data or data from more than one prior 
period. Some order-based AR models are described below.

Computation of inputs at the second period
The computation of µ and Σ at the second period of investment 
allocations is obtained as follows:

 µ µ= ∅ + =−µ
t Nt t t , 2, ,1 1  [Eqn 15]

 Σ = ∅ Σ + =−Σ
t Nt t t , 2, ,1 1  [Eqn 16]

The computation of µ and Σ at the second period of investment 
allocations can also be obtained from the stock profits π at the 
second period. The profit at the second period is as follows:

 π π= ∅ + =−µ
t Nt t t , 2, ,1 1  [Eqn 17]

where for each t, πt represents a (row) vectors of profits at 
time t. µ and Σ are predictors for the observation at times t−1, 

FIGURE 2: Plot of portfolio expected rate of return as a function of portfolio risk.
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FIGURE 3: Plot of portfolio expected profit as a function of portfolio risk.
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while ∅
µ1  and ∅

Σ1  are the vectors of autoregression 
parameters to be estimated. For both µ and Σ, ϵt is a random 
error vector (also called innovation or white noise), which is 
independent and identically distributed with E(ϵt) = 0 and 
Var(ϵt) = σ 2

t.

In matrix form, the computation of the expected rate of 
profit, based on the first-order autoregressive model (AR(1)), 
can be expressed as follows:
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Then using the least square approach, parameter ∅
µ1  for the 

µ is obtained as follows:
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In matrix form, the computation of the covariance matrix, 
based on the first-order autoregressive model (AR 1), can be 
expressed as follows:
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Then, using the least square approach, parameter ∅
µ1  for the 

Σ is obtained as follows:
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Computation of inputs at the third period
The computation of µ and Σ at the third period of investment 
allocations is obtained as follows:

t Nt t t tµ µ µ= ∅ + ∅ + = …− −µ µ
, 3, ,1 1 2 2  [Eqn 24]

Σ = ∅ Σ + ∅ Σ + = …− −Σ Σ
, 3, ,1 1 2 2 t Nt t t t  [Eqn 25]

The computation of µ and Σ at the third period of investment 
allocations can also be obtained from the stock profits π 
at the third period. The profit at the second period is as 
follows:

t Nt t t tπ π π= ∅ + ∅ + = …− −π π
, 3, ,1 1 2 2  [Eqn 26]

where each t, µt-1 and µt-2 (for the expected rate of profit µt 
at times t) as well as Σt-1 and Σt-2 (for the covariance matrix 
Σt at time t) represent rows of vector predictors for the 
observation at times t–1 and t–2, respectively; ∅

µ1  and 
∅

µ2  are the coefficients of vector µt to be estimated, ∅
π1  

and ∅
π2  are the coefficients of vector πt to be estimated, 

while ϵt is a random error vector and is assumed to be 
normally distributed. Errors ϵt are independent of one 
another and assumed to be normally distributed with 
expectation zero and constant variance σ 2

t. In matrix form, 
the third-period inputs for the expected rate of profit, and 
the covariance matrix, can be computed from the following 
linear system:
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By letting:
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Then the third-period inputs µ can also be obtained by:

( ) ( )∅ =µ µ µ µ µ

−1
A A A bT T  [Eqn 28]

Similarly, for Σ in matrix form, the third-period inputs for the 
expected rate of profit and the covariance matrix can be 
computed from the following linear system:
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By letting:











=
Σ

Σ

















=

Σ Σ

Σ Σ





















∅ =
∅

∅











Σ Σ

− −

Σ
Σ

Σ

b A

N
N N

,  and ,
3

2 1

1 2

1

2

The third-period inputs can also be obtained by:

A A A bT T( ) ( )∅ =Σ Σ Σ

−

Σ Σ

1
 [Eqn 30]
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Computation of the inputs at the  
( p + 1)st period
At the (p + 1)th period, µ and Σ are obtained by solving the 
following linear system of difference equations:

∑µ µ= ∅ +−
= µ1

t j t j t
j

p
 [Eqn 31]

∑Σ = ∅ Σ +−
= Σt j t j t
j

p

1
 [Eqn 32]

The computation of µ and Σ at the third period of 
investment allocations can also be obtained from the stock 
profits π at the third period. The profit at the second period 
is as follows:

∑π π= ∅ +−
= π1

t j t j t
j

p
 [Eqn 33]

For the computational simulations, the fifth-order autoregressive 
model (defined by Equation 33 where p = 5) is used to forecast 
the asset profits.

Sequential investment allocations
The concern is the following: find the investment allocations 

i
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and with the following substitutions:
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 [Eqn 37]
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where if the following designations apply:

• ⋅  Ri
k  is the profit of asset i at period k .

• µ 
i
k  is the expected value of the profit at period k.

• σ  
i
k  is the volatility.

• µ 
p
k  is the specified acceptable minimum level for the 

portfolio expected rate of profit.

• σ  
ij
k  = cov (R Ri

k
j
k   , ) is the covariance between the profit 

of asset i and the profit of asset j at period k .

For the first period, the optimal investment allocations can 
be computed from collected historical data and some 
specified level of expected profit. Subsequently, for period 

µ>  k i
k1, ,  i= 1, …, N and ∑ = σ   k

ij
k  =cov(    ,R Ri

k
j
k ) can be 

obtained from the forecasts that are generated for µ − 
i
k 1  

and ∑ = σ−  − k
ij
k1 1 =cov(R Ri

k
j
k−  − ,1 1 ) based on an AR model 

configuration.

Computational simulations
The computational simulations are based on ‘Sequential 
investment allocations’ section to show the effectiveness of 
the theory. The first period investment allocations are 
based on historical data of Table 1. From that table, an 
expected value is computed for each asset and a covariance 
matrix for the whole table is also computed to serve as 
input to the investment allocation problem.

By applying a fifth-order autoregressive model to forecast 
the financial data of Table 1 (considered for the first period 
investment allocations), the autoregressive coefficients 
∅ πj  (Equation 33) for the assets are given in Table 4.

For each of the 10 considered assets, the associated 
autoregressive coefficients enable one to perform forecasting 
and obtain four time series of length 12 each (time series for 
the next four periods where each period has 12 months). 
For each period, an investment allocation was performed 
and was summarised by an efficient frontier curve. An 
investment allocation (portfolio selection) is associated 
with each point of the efficient frontier (each pair of [risk, 
profit]).

Figures 4 to 8 are the computational simulations for the 
sequential investment allocations from period 1 to period 5 
respectively.

By browsing and comparing the efficient frontier of Periods 
1–5 defining the sequential optimal investment allocation for 
portfolio optimisation, one can notice that the more we 
progress in time, the more the portfolio risk (the portfolio 
variance) decreases and the portfolio profit increases, which 
shows a good process for the optimisation of the considered 
investor’s portfolio.

TABLE 4: Autoregressive coefficients ∅ _(j_π ) (Equation 33) for the assets.

Autoregressive 
coefficients

Profit1 Profit2 Profit3 Profit4 Profit5 Profit6 Profit7 Profit8 Profit9 Profit10

∅ π1 1.09201 0.10380 -0.73062 0.486818 0.509355 -0.00059976 0.267625 0.13375 0.38433 1.14369

∅ π2 -0.83426 -0.23070 -0.15226 0.054135 -0.118681 0.17215478 0.353337 0.28666 -0.41873 -1.33239

∅ π3 0.81231 -0.57085 0.49470 0.521450 0.094610 0.21962250 0.033513 0.21674 0.95078 0.57674

∅ π4 -0.32229 0.56427 1.01727 0.197083 0.037116 -0.20701822 -0.104932 0.52334 -0.39808 -0.20262

∅ π5 0.26989 1.03991 0.59569 -0.287504 0.470893 0.79414588 0.455793 -0.26870 0.58139 0.71549
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The more time is passing the more risk is getting minimised 
and profit is getting maximised. One may continue forecasting 
and analyse the mean-variance performance.

Conclusion
The aim of this article was to compute the optimal investment 
allocations of a number of portfolio assets over a long-term 
period. The trade-off between risk and profit for such a 
long-term formulation was investigated, and computational 
simulations corroborate the notion that the higher the risk, the 
higher the profit. For efficient risk management, the given 
period was subdivided into discrete sub-periods so that every 
sub-period addressed an optimal investment allocations 
problem. The forecast data could be computed iteratively for 
consecutive periods.
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