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Introduction
South Africa is one of the most diverse and promising emerging markets globally. It is the sixth 
most outstanding in the emerging economies category with vast opportunities within its border. 
It is a gateway to the rest of the African continent (a market of more than 1 billion people) and is 
a key investment location. It is the economic powerhouse of Africa and forms part of BRICS 
group of countries, which includes Brazil, Russia, India and China. South African stock market, 
Johannesburg Stock Exchange (JSE), is the largest stock exchange in Africa with more than 400 
listed firms offering a wide range of products. The South African stock market is significantly 
robust and is able to make the list of the first 20 largest stock markets in the world consistently 
(Hassan 2013). This market value is unavoidably significant among world stock indexes, making 
it respond to the global economic meltdown surrounding emerging markets.

The JSE All Share Index (ALSI) is crafted to represent the performance of South African companies, 
providing investors with a broad and harmonious set of indices, which compute the performance 
of the major capital and industry components of the South African stock market. It has 164 listed 
companies and it is about 99% of the capitalisation of the South African market. The ALSI as an 

Orientation: Value-at-risk (VAR) and other risk management tools, such as expected shortfall 
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equity index portrays the operational activities of a typical 
ordinary share in the South African market. The ALSI also 
evaluates the operationalisation of the entire market 
(Makhwiting 2014). The major volume of all securities listed 
on the JSE is an integral function of the market index because 
the share prices flow of the listed companies is what drives 
the market.

However, this market is highly volatile and unpredictable, 
making it very risky. This may be the result of stylised 
characteristics of financial returns that include volatility 
clustering, long-range dependency, time-varying volatility 
and non-normality (Fama 1965; Mandelbrot 1963; Stavroyiannis 
et al. 2012). Financial returns computed at the weekly, daily 
or higher frequency show the near-indelible attribute of 
conditional heteroscedasticity (Paolella 2016). The generalised 
auto-regressive conditional heteroscedasticity (GARCH)-
type models, usually propelled by Gaussian innovations, 
result in a heavy-tailed process and the innovations are still 
highly non-Gaussian. Innumerable suggestions have been 
made for substituting the Gaussian distribution with a 
leptokurtic one, the ground-breaking article being Bollerslev 
(1987) with the use of a Student’s t-distribution. Bhattacharyya, 
Chaudhary and Yadav (2008) used a GARCH (1,1) combined 
with Pearson type-IV distribution (PIVD) to model volatility 
clustering of stock indices of countries in Europe and Asia. 
Chan and Gary (2006) employed a GARCH (1,1) combined 
with generalised extreme value distribution to model 
electricity spot prices.

There are many types of empirical models that have been 
used to describe the stylised facts in stock returns. These 
include: the auto-regressive conditional heteroscedasticity 
(ARCH) model proposed by Engle (1982), the GARCH 
model of Bollerslev (1986), the integrated GARCH (IGARCH) 
model of Engle and Bollerslev (1986), the exponential 
GARCH (EGARCH) model of Nelson (1991), the threshold 
GARCH (TGARCH) model of Glosten, Jagannathan and 
Runkle (1993), the asymmetric power ARCH (APARCH) 
model proposed by Ding Granger and Engle (1993), the long 
memory models such as the fractionally integrated GARCH 
(FIGARCH) model of Baillie, Bollerslev and Mikkelsen 
(1996), the fractionally integrated exponential GARCH 
(FIEGARCH) model of Bollerslev and Mikkelsen (1996), the 
fractionally integrated APARCH (FIAPARCH) model of Tse 
(1998) and the hyperbolic GARCH (HYGARCH) model 
proposed by Davidson (2004). To obtain good estimates for 
risk management, the challenge is to choose the appropriate 
GARCH-type model which adequately captures volatility 
clustering and at the same time is able to capture the non-
normality property of financial returns. Paolella (2016) used 
stable APARCH model to model four stocks from DJIA 
index. Sin, Cheong and Hooi (2017) used the TGARCH 
combined with the generalised error distribution (GED) to 
model crude oil index. In the literature, there is no agreement 
of the type of the heavy-tailed distribution to be used in 
order to capture the non-normality of the residuals of the 
GARCH-type models. In this article, we are interested in the 

relative performance of the APARCH model combined with 
heavy-tailed distributions, namely generalised Pareto 
distribution (GPD), PIVD and stable distributions (SDs) in 
estimating the value-at-risk (VAR) for South Africa stock 
market.

We are not aware of any literature relating to an application 
of APARCH-GPD model, APARCH-PIVD model and 
APARCH-SD model to the JSE ALSI. To the best of our 
knowledge, there is limited research on combining 
dynamic volatility models with heavy-tailed distributions 
in modelling South African financial data. In this article, 
we extend the work of Paolella (2016) by proposing 
GARCH-type models combined with heavy-tailed 
distributions to model the daily JSE All Share Price returns. 
We estimate VAR and then select the more robust model 
using the Kupiec likelihood ratio (LR) test.

The rest of the article is organised as follows. In Section 2, we 
provide some background theory on APARCH(1,1), GPD, 
PIVD, SD, VAR and backtesting. The data used in this study 
are described in Section 3. In Section 4, we present the 
empirical results and discussions. Finally, Section 5 concludes 
this work.

Methodology
In this section, we present some background theory on the 
APARCH (1,1) model combined with GPD, PIVD and SDs. 
We also discuss VAR and backtesting procedures.

Asymmetric power auto-regressive conditional 
heteroscedastic (1,1) model
Ding et al. (1993) introduced the APARCH model as an 
extension of the GARCH model. The APARCH generalised 
both the ARCH and GARCH models. The general APARCH 
(p, q) model can be written as:

∑ ∑
µ σ ε

σ ω α γ β σ( )
= + =

= + − +δ
δ

δ
− −= −=

X a a

a a

, ,

,

t t t t t t
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 [Eqn 1]

Where εt is assumed to follow a distribution with mean zero 
and variance 1, ω > 0, αi ≥ 0, βj ≥ 0 and 0 1ii

p

j

q

1 1∑ ∑α β≤ + ≤
= =

. 
αi and βj are the ARCH and GARCH coefficients, respectively, 
and γi is the leverage coefficient. When γi is positive, it implies 
that the negative shocks have stronger impact on price 
volatility than the positive shocks. δ is a positive real number 
that functions as the symmetric power transformation of σt. 
Considering the case where δ = 1 for p = q = 1, the volatility 
equation becomes:

a a ,t t t t1 1 1 1 1 1σ ω α γ β σ( )= + − +− − −  [Eqn 2]

Maximum likelihood estimation
In estimating the parameters of the GARCH-type models, 
the maximum likelihood estimation (MLE) method is the 
most common method for the estimation of GARCH model 
(Karlsson 2002; Shabani, Gharneh & Esfahanipour 2017). 
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Let η …L X X X( | , , , )T1 2  be the likelihood function, where  
η = (γ, δ, θ) are the set of parameters needed to be estimated in 
the case of the APARCH ( p, q) model, where γ and q are 
defined as γ = (γ1, γ2 …, γp) and γ = ( ω, α1, …, αp, β1 …, βp). Also, 
given that the data X1, X2,…, XT are not independent, then the 
joint density function is given by:

η( ) ( ) ( ) ( )… = …− − −f X X X f X F f X F f X, , , | | | ,T T T T T1 2 1 1 2 1  [Eqn 3]

where Ft is information at time t and f is the density function 
of εt.

The likelihood function can be written as:

F f X FL | | ,t t

T

t t1 1 1∏η( ) ( )=− = −
 [Eqn 4]

Then, the log-likelihood function is:

F L F f X F| log | log | ,t t t

T

t t1 1 1 1 ∏η θ( ) ( ) ( )=   = 



− − = −  [Eqn 5]

Generalised Pareto distribution
The two-parameter GPD, with scale parameter β and shape 
parameter ξ, has the following distribution function:
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, [Eqn 6]

where y = x–τ are the exceedances above the threshold τ and 
y > 0 when, ξ ≥ 0, 0 ≤ y ≤ –β/ξ when ξ < 0, and the scale 
parameter β > 0 (Tsay, 2013).

Peaks-over-threshold
In order to fit the GPD to standardised residuals, we used 
the peaks-over-threshold (POT) method. The POT method 
establishes extreme data points (i.e. extreme standardised 
residuals) that go beyond a high threshold τ and specifically 
models these exceedances separately from non-extreme 
data points. For x–τ ≥ 0, the excess distribution function is 
written as:

τ
τ

τ
( ) ( ) ( )

( )− =
−

−τF x
F x F

F

,

1
, [Eqn 7]

which can also be expressed as:

τ τ τ( )( ) ( ) ( ) ( )= − − +τF x F F x F1 , [Eqn 8]

which permits us to apply the POT method (Chinhamu et al. 
2014). To apply the POT method in modelling, there are 
mainly two steps to follow. Firstly, we need to choose a 
suitable threshold. Secondly, we fit the GPD to the 
exceedances. For a sufficiently high threshold, F(τ) is 
estimated by (1–Nτ/n), where n is the sample size and Nτ is the 
number exceedances. According to Embrechts et al. (2013), 
Ft(x–t) can be estimated by a GPD approximation using MLE 
procedure. The tail estimator obtained is given by:

ξ
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τ( ) ( )= − + −
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 [Eqn 9]

The choice of threshold, τ, is an act of balancing bias and 
variance (Chinhamu et al. 2014). If the threshold is too low, 
it is more likely to violate the asymptotic property of the 
model and cause bias; if the threshold is too high, it will 
generate a small number of exceedances for fitting and 
results in high variances. A fundamental approach is to 
select a threshold as low as possible such that the estimation 
of the model can provide a rational result (Chinhamu et al. 
2014; Ren & Giles 2007).

Threshold selection
In this article, we utilise the mean excess plot and the 
parameter stability plot for threshold selections.

Mean excess plot
Beirlant et al. (2004) define the mean excess function with 
the finite expectation E(X) <∞ as e E X Xτ τ τ( )( ) = − > , that is, 

the mean of exceedances over a threshold τ. If the latent 
distribution of X–τ |X > τ follows a GPD, it implies that the 
proportionate mean excess function is:

τ σ ξτ
ξ( ) = +

−


e
1

,  [Eqn 10]

provided that σ ξτ+ > 0 and ξ < 1. From [Eqn 9], it can be seen 
that the mean excess function is linear in τ. It implies that X > τ 
follows a GPD if and only if the mean excess function is linear 
in τ (Chinhamu et al. 2014; Coles 2001). The empirical mean 
excess function is defined as:

∑
∑
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− τ
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 [Eqn 11]

where n is the sample size and τ>I  X{ }i
 is the indicator 

function. The empirical excess plot is a graphical 
representation of the paired observations. (τ,  ê  (τ)) 
(According to Coles (2001), the interpretation of the mean 
excess plot is not always simple in practice. The mean 
excess plot can be used to choose the suitable threshold τ. 
The suitable threshold is obtained when the graph shows 
some evidence of linearity.

Parameter stability plot
If GPD is true for excesses over threshold ’w’ with ɛ and 
σw then for higher threshold τ > w, these excesses also adopt 
a GPD with ɛ which has a scale parameter given by: 
σ σ ε τ( )= + −τ ww , by re-parameterising the scale parameter 
σt, σ* = σt – ετ which is constant with respect to τ, because w 
is positioned at a threshold of reasonably high value (Coles 
2001). A parameter stability plot conforms GPD over 
specific values of the thresholds in contrast to the scale 
and shape parameters. The model threshold is selected 
at the spot where the shape and the scale parameter 
remain fixed even upon considering sampling variability. 
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When a suitable threshold is obtained, the exceedance 
follows a GPD.

Maximum likelihood estimation for generalised Pareto 
distribution
For a sufficiently high threshold τ and assuming that there 
are m exceedances with Xi–τ ≥ 0, the subsample {x1 − τ, … ,xm − τ} 
has an underlying GPD distribution, where xi−τ ≥ 0 for ξ ≥ 0, 
0 ≤ Xi−τ ≤ β/ξ for ξ < 0, and then the logarithm of the probability 
density function (pdf) of xi can be derived as:
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 [Eqn 12]

Hence, the log-likelihood function L(ξ, β|yi − t ) for the GPD 
is the logarithm of the joint density of the m exceedances, 
that is, 
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To obtain the estimates for ξ and β, we maximise the log-
likelihood function of the subsample under an optimal 
threshold τ.

Bartels’ rank test
Before we fit the GPD to the standardised residuals, we need 
to check whether they are independent and identically 
distributed  (i.i.d) using the Bartels’ rank test. The Bartels’ 
rank test is based on the rank of standardised residuals in 
ascending order. The ranks are sequential number of xi: Rank 
(xi). All the possible set of rank arrangement of standardised 
residuals is given as n!. Under the null hypothesis of 
randomness, each rank arrangement is equally likely to 
occur. The test statistic is given as:

∑ ( )( ) ( )= − +=

−
NM x xrank ranki ii

n

1

2

1

1  [Eqn 14]

For large sample size, test statistics is:
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 [Eqn 15]

Model fit diagnostic plot
Probability plot, return level plot, quantile plot and empirical 
versus fitted density comparison plots are part of standard 
statistical model diagnostic plots used in checking models fit 
as well as threshold choice suitability. Most of the checks are 

post-calculation diagnostic plots and are therefore based on a 
chosen threshold.

Pearson type-IV distribution
The generalised family of frequency curves, now known as 
the Pearsonian system of curves, was first developed by Karl 
Pearson (Cheng 2011). The Pearsonian family includes 
members such as the PTIVD, normal, Student-t, F, beta, 
gamma and inverse Gaussian, Pareto distributions. The pdf 
of the PIVD is given by:

λ υ λ( ) = + −
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1  [Eqn 16]
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 is a normalisation 

constant that depends on m, v and a. The pdf of the PIVD is 
invariable under simultaneous change (a to − a, v to − v). 
We specify, a > 0, so that the curve is always bell-shaped. λ 
and a are the location and scale parameters, respectively, and 
υ is the skewness parameter. If υ > 0, then the distribution is 
positive, while if υ < 0, then the distribution is negative. The 
parameter m controls the tail thickness and can thus be 
regarded as a kurtosis parameter. If m is decreased, the 
kurtosis is increased and for smaller values of m, the tails of 
PIVD are heavier than those of a Gaussian distribution. 
The PIVD is essentially an asymmetric version of the 
Student-t distribution, that is, when υ = 0.

Maximum likelihood parameter estimation of the 
Pearson type-IV distribution
We obtain the parameter estimates of the PIVD by minimising 
the negative log-likelihood given by:

∑ ∑λ υ
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N i
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 [Eqn 17]

where N is the number of observed data points xi. The 
minimising procedure is performed numerically.

For more details on the MLE of the Pearson’s family 
distributions, see Johnson, Kotz and Balakrishman (1994) 
and Nagahara (1999). In this article, the maximum likelihood 
(ML) estimates for the PIVD are estimated using the R 
package (PearsonDS).

Stable distribution
The SD is a class of probability distributions described by 
four parameters, namely α an index of stability (shape 
parameter) with range 0 < α ≤ 2 (in the literature, α is also 
referred to as the shape parameter), υ the skewness parameter 
with range, −1 ≤ β ≤ 1, γ ≥ 0 the scale parameter and δ ϵ  a 
location parameter. These distributions are widely used in 
practice because they allow for skewness and heavy tails. 
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Although many parametrisations can be used to describe the 
characteristic function of an SD, it does not have an analytical 
form in general. We follow the S0-parametrisation suggested 
by Nolan (2014) and say a random variable X follows an SD 
if its characteristic function is given by:

E e

u
i u
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i u
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The sign function used in Eqn 15 is defined as:

=
− <

=
>









u
u
u
u

sign  
1 0

0 0
1 0.

For the a = 1 case, x logx at  x = 0 is interpreted as =↓ x xlim log 0.x 0

Parameter estimation of stable distributions
The fundamental problem of estimation for SDs is to estimate 
the four parameters a, β, γ and d. Many approaches have 
been used in estimating this basic problem; McCulloch 
(1986) proposed a quantile method; Ma and Nikias (1995) 
developed a fractional moment method, while sample 
characteristic function (SCF) method was introduced by 
Kogon and Williams (1998), which was a product of the 
foundation built by DuMouchel (1973) on MLE. Ojeda 
(2001) extensively compared these approaches where he 
concluded that ML estimates showed the most accurate 
measure or estimate. The second best is the SCF, followed by 
the quantile method and the moment method. The ML 
approach makes it easy for one to give large-sample 
confidence intervals for the parameters, thus making it the 
more preferred method.

If X1,X2, … ,Xn are i.i.d. stable samples, Nolan, Panorska and 
McCulloch (2001) defined the log-likelihood function as:

X, , , ln | , , ,
i

n

i1
 ∑α β γ δ α β γ δ( ) ( )=

=
 [Eqn 19]

The lack of closed-form formulas for general stable densities 
is a major challenge in evaluating [Eqn 19]. It should be 
mentioned here that innovative ML estimation techniques 
employ two methods: the direct integration method (Nolan 
et al. 2001) and the fast Fourier transform (FFT) method for 
approximating the stable pdf (Mittnik et al. 1999). The two 
approaches can be evaluated based on the efficiency terms, 
while the types of approximation algorithms differentiate 
both. Nolan (2003) suggested a stable programme which 
establishes authentic computations of stable densities 
ranging between α > 0.1 and any β, γ and δ.

Value-at-risk and backtesting
Value-at-risk is a risk management tool that has become a 
benchmark for measuring market risks. This risk measure is 
used to evaluate the maximum possible loss for a portfolio 
over a given time period (McNeil, Frey & Embrechts 2005). In 
this article, we estimate VAR using the proposed distributions 
and compare them with the historical VAR values.

The VAR (for a given probability p) is defined as the pth 
quantile of F, that is,

( )= −−F pVAR 1p
1

where F−1 is the quantile function (Tsay 2013).

The strength of a model is the ability to forecast accurate VAR 
estimates for adequate capitalisation. In this article, we test 
VAR model identification and effectiveness by utilising the 
Kupiec LR unconditional coverage test (Kupiec 1995). The 
Kupiec likelihood test utilises the fact that a good model 
should have its proportion of violations of VAR estimates 
close to the corresponding tail probability, α (Chifurira & 
Chinhamu 2017; Chinhamu et al. 2014). The null hypothesis 
is that the expected proportion of violations is equal to α. 
Under this null hypothesis, the Kupiec statistic, which is 
given by:

LR x
N

x
N

2 ln 1 2 ln 1 ,UC

x N x

x N x
α α( )=







−



















− −





α α −
−

α α

α
α

 
 [Eqn 20]

is asymptotically distributed according to a chi-square 
distribution with one degree of freedom.

Our approach
The following steps are used for calculating VAR and then 
backtesting using the Kupiec LR test. An APARCH model is 
fitted to the return using the pseudo-ML procedure using a 
normal distribution governing the innovations.

• The standardised residuals are extracted from the model.
• The GPD (model 1), PIVD (model 2) and SD (model 3) 

are fitted to the standardised residuals using the ML 
estimation.

• The VAR is calculated for the three models.

Data
In this article, the data examined consist of the daily closing 
price of the All Share Index (ALSI) for the period 20 May 2005–
31 May 2016 obtained from INET BFA. We divide the data into 
in-sample data set (20 May 2005–31 December 2013) and out-of-
sample data set (02 January 2014–31 May 2016). The in-sample 
data are used for the model estimation and for forecasting risk, 
while the out-of-sample data are used for testing VAR forecast. 
As a result, the estimation window has 2155 observations, the 
testing window has 602 observations and thus the number of 
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observations is 2757. We therefore obtain the daily log returns  
(rt) of the ALSI. The log returns are given by:

r
P
P

lnt
t

t 1

=





−

 [Eqn 21]

where Pt is the daily closing price of ALSI at time t and Pt−1 is 
the daily closing price of ALSI at time t−1. Figures 1a and b 
show the time series and log returns plots of the in-sample 
data, respectively.

The time series plot shows that the daily ALSI has a trend 
and hence is non-stationary in mean and variance. Using 
Figure 1b, the log returns seem to be stationary but the 
variance appears not to be constant over time indicating 
volatility clustering. To confirm the stationarity of the JSE 
ALSI log returns, the augmented Dickey–Fuller test is used to 
formally test for stationarity in mean and variance. The null 
hypothesis is that the log return series is non-stationary and 
the alternative hypothesis is that the log return series is 
stationary. The augmented Dickey–Fuller statistic is -13.612 
with p-value of 0.01< 0.05; thus, rejecting the null hypothesis 
at 5% significance level means that the log returns are 
stationary. Table 1 presents the descriptive statistics for the 
daily JSE ALSI log returns.

The mean returns are close to zero. The negative skewness is 
significantly different from zero and large excess kurtosis 
clearly illustrates the non-normality (asymmetric property of 
the log returns) of the distribution. As the p-value for Ljung–
Box Q statistic is less than 0.05, we reject the null hypothesis 
of no presence of serial correlation. The p-value for the ARCH 
Lagrange multiple (ARCH-LM) statistic is less than 0.05. 
Thus, we reject the null hypothesis of the absence of potential 
time varying volatility (no arch effect) up to lag 20. These 
findings led to the adoption of an asymmetric ARCH 
(APARCH) model as discussed in Section 2.

Empirical results
This section presents the empirical evidence from the 
Financial Times Stock Exchange (FTSE) or JSE ALSI log 

returns data set. It examines the VAR performance of the 
APARCH (1,1) model combined with GPD, PTIVD and SDs.

Asymmetric generalised auto-regressive 
conditional heteroscedasticity type model fitting
In the first step, we fit the asymmetric GARCH-type models 
to the returns and check their adequacy because the returns 
have a significant skewness (asymmetric). The EGARCH 
(1,1), TGARCH (1,1) and APARCH (1,1) models are fitted to 
the FTSE or JSE ALSI log returns using the MLE method. 
Table 2 shows the ML parameter estimates and the standard 
errors in brackets of the asymmetric GARCH models with 
normal distribution innovation. The Akaike information 
criterion (AIC) and Bayesian information criterion (BIC) 
model selection criteria are also reported in Table 2.

In Table 2, it is observed that the ML parameters’ estimates 
for the three asymmetric GARCH models fitted to the FTSE 
or JSE ALSI log returns are significant at least at 10% level of 
significance. The APARCH (1,1) model has the lowest AIC 
and BIC values and is selected as the best asymmetric 
GARCH-type model. The APARCH (1,1) model has 
successively captured the volatility clustering with Ljung–
Box p-value 0.3367 > 0.05 and ARCH-LM p-value 0.3743 > 
0.05 of the extracted standardised residuals. The model is 
found to be able to capture the asymmetry of the returns with 
p-value 0.2862 > 0.05 of the sign bias statistic. Table 3 shows 
the descriptive statistics of the extracted standardised 
residuals.

The table reports summary statistics for the standardised 
residuals.

In Table 3, it is observed that the excess kurtosis value of the 
standardised residuals from the fitted APARCH (1,1) with 
normal distribution innovations is greater than zero. This 
indicates that there is still relatively more value in the tail. 
Therefore, the standardised residuals seem to have a tail 
heavier than that of normal distribution. To check for the 
non-normality of the standardised residuals, the Q–Q plot 
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FIGURE 1: Time series plot of (a) daily JSE All Share Index and (b) daily JSE All Share Index log returns from 20 May 2005 to 31 December 2013 (in-sample data set).

TABLE 1: Descriptive statistics.
No. of obs Mean Std. dev. Min Max Skewness Excess Kurtosis Ljung–Box p-value ARCH-LM p-value

2155 0.0006 0.0133 −0.0758 0.0683 -0.2051 3.4173 0.0072 <0.0000

ARCH-LM, auto-regressive conditional heteroscedastic Lagrange multiple; Min, minimum; Max, maximum; Std. dev., standard deviation.
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and Shapiro–Wilk tests are employed. Figure 2 shows the 
empirical density plot and a Q–Q plot of the standardised 
residuals.

In Figure 2, the Q–Q plot suggests that the standardised 
residuals seem to diverge at the tails. This is confirmed by the 
Shapiro–Wilk test statistics with p-value 0.000 < 0.05. This 
confirms that the standardised residuals of APARCH (1,1) 
have a much heavier tail than that of the normal distribution, 
thus justifying using heavy-tailed distributions to model the 
extracted standardised residuals from APARCH model.

We fit the GPD, PTIVD and SDs to the standardised residuals 
from the APARCH model. Fitting a statistical distribution 
usually assumes that the data are i.i.d., that is, randomness, 
with no serial correlation and no heteroscedasticity. We 
tested for randomness using the Bartels’ rank test. The 
null hypothesis is that the standardised residuals are i.i.d. 
The p-value of the Bartels’ rank tests statistic is 0.9117 
which is greater than 0.05, indicating that the standardised 
residuals are i.i.d. From Table 3, we noted that the 
standardised residuals are not serially correlated and have 
no heteroscedasticity.

Combining asymmetric power auto-regressive 
conditional heteroscedastic (1,1) with 
heavy-tailed distributions
Asymmetric power auto-regressive conditional 
heteroscedastic (1,1)–generalised Pareto distribution 
model
To fit the GPD model, we check whether the tails of the 
standardised residuals follow a Pareto distribution. Figure 3 
shows the Pareto quantile plot for the extracted standardised 
residual.

In Figure 3, the tail of the data is almost a straight line, 
confirming that the standardised residuals may follow 

a GPD. The mean excess and the parameter stability plots 
were used to come up with a reasonable high threshold t. 
Figure 4 shows the mean excess plot.

The suitable threshold must lie where there is a positive 
change in the mean excess. In Figure 4, the optimal threshold 
seems to lie around 2. The selection of the suitable threshold 
is performed empirically. We use the parameter stability plot 
to check the threshold where the parameters are most stable. 
Figure 5 shows the parameter stability plot for threshold 
between 1.5 and 2.5.

Figure 5 shows that the estimated parameters are more 
stable when t  ≥ 1.7. The Pareto quantile plot is then used 
to obtain the optimal threshold of 1.7865. There are 635 
observations above the threshold. As the exceedances above 

TABLE 3: Descriptive statistics of standardised residuals of the asymmetric power auto-regressive conditional heteroscedastic (1,1) model.
No. of obs Mean Std. dev. Min Max Skewness Excess kurtosis Ljung–Box p-value ARCH-LM p-value

2155 0.0006 0.994 −4.4260 3.4712 −0.3748 0.4203 0.3367 0.3743

ARCH-LM, auto-regressive conditional heteroscedastic Lagrange multiple; Min, minimum; Max, maximum; Std. dev., standard deviation.

TABLE 2: Maximum likelihood parameter estimates of asymmetric generalised 
auto-regressive conditional heteroscedasticity models.
Parameter estimate EGARCH (1,1) TGARCH (1,1) APARCH (1,1)

µ̂ 0.0005 (0.0247)** 0.0005 (0.0195)** 0.0004 (0.0048)***

α̂0 −0.1616 (0.0000)*** 0.0000 (0.0897)* 0.0002 (0.0000)***

α̂0 −0.1023 (0.0000)*** 0.0105 (0.3905)* 0.0713 (0.0000)***

β̂1 0.9819 (0.0000)*** 0.9057 (0.0000)*** 0.9251 (0.0000)***

γ̂ 1 0.1369 (0.0000)*** 0.1319 (0.0000)*** 0.7932 (0.0000)***

δ - - 1.0000
AIC −6.1498 −6.1459 −6.1533
BIC −6.1367 −6.1327 −6.1402

Note: *, ** and *** indicate p-values at 10%, 5% and 1% level of significant, respectively.
APARCH, asymmetric power auto-regressive conditional heteroscedastic; AIC, Akaike 
information criterion; BIC, Bayesian information criterion; GARCH, generalised auto-
regressive conditional heteroscedasticity; EGARCH, Exponential generalised auto-regressive 
conditional heteroscedasticity; TGARCH, Threshold generalised auto-regressive conditional 
heteroscedasticity.
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FIGURE 2: Q–Q plot of standardised residuals of asymmetric power auto-
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the threshold cannot be assumed to be i.i.d., declustering was 
performed.

We fit GPD (model 1) to the declustered exceedances. Table 4 
reports the ML parameter estimates with standard errors in 
brackets.

Figure 6 shows the diagnostic plots for the GPD model.

The probability plot (top left panel) and the quantile plot 
(top right panel) suggest that the exceedances seem to 
follow the GPD model. The return-level plot (bottom left 
panel) confirms that the GPD model is adequate to estimate 
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TABLE 4: Maximum likelihood estimates of the generalised Pareto distribution for the asymmetric power auto-regressive conditional heteroscedastic (1,1)–generalised 
Pareto distribution model.
EVT threshold t Sample size Number of observations in the tail GPD shape parameter ξ GPD scale parameter v 

1.7865 2155 635 −0.0647 (0.1254) 0.3793 (0.0701)

GPD, generalised Pareto distribution; EVT, extreme value theory.
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VAR of the exceedances. Finally, the density plot (bottom 
right panel) seems consistent with the histogram of the 
data. Thus, all the diagnostic plots suggest that the 
exceedances follow the GPD model. The diagnostic plots 
indicate that the GPD provides a good depiction of the 
residuals of an APARCH (1,1) model.

Asymmetric power auto-regressive conditional 
heteroscedastic (1,1)–Pearson type-IV  
distribution model
The PIVD is fitted to the standardised residuals extracted 
from the APARCH (1,1) model with normal innovations. The 
parameters are estimated using the method of ML. The ML 
procedure is carried out using R package (PearsonDS). 
Table 5 shows the ML estimates of the PIVD fitted to the 
standardised residuals of the APARCH (1,1) model with 
normal innovations.

In Table 5, the value of = >m̂ 12.6666 0.5, thus satisfying the 
condition for a PIVD. The AD statistic is significant; thus, the 
PIVD is a good fit of the standardised residuals extracted 
from the APARCH (1,1) model.

Asymmetric power auto-regressive conditional 
heteroscedastic (1,1)–stable distribution model
The SD is also fitted to the extracted standardised residuals 
of the APARCH (1,1) model. The model is referred to as 

APARCH (1,1)–SD model. Table 6 shows the ML parameter 
estimates of an SD fitted to the standardised residuals of 
APARCH (1,1) model.

In Table 6, the value of the index of stability (α̂ ) is 1.9163 
which is less than 2. This suggested that the tail of the 
standardised residuals follows a Pareto law, indicating that 
the distribution is heavy-tailed and also has infinite variance. 
The stable skewedness (β̂ ) is -1, suggesting that the 
standardised residuals are skewed to the left. The AD 
statistics has a p-value of 0.3248 > 0.05, confirming that the 
SD is a good fit for the standardised residuals.

Value-at-risk is calculated for each model. Table 7 presents 
VAR estimates for the APARCH (1,1)–GPD, APARCH 
(1,1)–PIVD and APARCH (1,1)–SD models at different 
levels of significance. We note that the APARCH (1,1) 
with Student t-distribution governing the innovations 
produced high VAR estimates. This suggests that the 
APARCH (1,1)–Student t-distribution model is inadequate 
to fully capture the ‘stylised facts’ exhibited by the FTSE or 
JSE ALSI returns. This phenomenon is well known in the 
literature.

The models are backtested using Kupiec test. The p-values of 
the Kupiec test for both the in-sample data set and out-of-
sample data set are summarised in Table 8.

TABLE 5: Maximum likelihood estimates of the Pearson type-IV distribution for the asymmetric power auto-regressive conditional heteroscedastic (1,1)–Pearson type-IV 
distribution model.
m̂ υυ̂ λλ̂ â AD statistic

12.6666 11.7361 −2.2198 4.2221 0.2868 (0.9477)

Note: p-value of AD statistics is given in parenthesis.
AD, Anderson-Darling.

TABLE 6: Maximum likelihood estimates of the stable distribution for the asymmetric power auto-regressive conditional heteroscedastic (1,1)–stable distribution model.

αα̂ ββ̂ γγ̂ δδ̂ AD statistic

1.9163 −1.0000 0.6784 0.0778 1.0652 (0.3248)

Note: p-Value of AD statistics is given in parenthesis.

TABLE 7: Value-at-risk estimates for the asymmetric power auto-regressive conditional heteroscedastic (1,1) model combined with different distributions.
Distribution governing the innovations VAR estimates

97.5% 95% 90%
Student-t 1.9992 1.6562 1.2772
GPD 1.7874 1.5186 1.2374
PIVD 1.8045 1.5368 1.2253
SD 1.8975 1.6123 1.2811

SD, stable distribution; VAR, value-at-risk; PIVD, Pearson type-IV distribution; GPD, generalised Pareto distribution.

TABLE 8: Value-at-risk backtesting for Johannesburg Stock Exchange All Share Index returns.
Variable In-sample data set Out-of-sample data set

Sample size = 2155 Sample size = 602

p-value of Kupiec test p-value of Kupiec test

Distribution 97.5% 95% 90% 97.5% 95% 90%
Student-t 0.0033 0.0003 0.0207 0.0436 0.0078 0.2551
Generalised Pareto distribution (GPD) 0.9862 0.5664 0.2306 0.4094 0.3265 0.3921
Pearson type-IV distribution (PIVD) 0.6890 0.4384 0.3278 0.0882 0.1667 0.5642
Stable distribution (SD) 0.1201 0.0000 0.0137 0.0882 0.0448 0.2551

Note: Bold values indicate most robust distribution at each VAR level.
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The VAR estimates from the APARCH (1,1)–Student 
t-distribution produced the lowest p-value less than 0.05 for 
the Kupiec LR test statistic at almost all VAR levels. The best 
model for VAR estimation for the JSE All Share Index returns 
differs at different VAR levels. The results show that the 
APARCH (1,1) with GPD innovations produced the highest 
and significant p-values at 97.5% and 95% levels. This 
indicates that the APARCH (1,1)–GPD model outperforms 
the APARCH (1,1) model with PIVD innovations and 
APARCH (1,1) model with SD innovations at 97.5% and 95% 
levels. Thus, at these levels, the most robust VAR model is 
APARCH (1,1)–GPD model. While at 90% VAR level, the 
APARCH (1,1) model with PIVD innovations produced 
the highest p-value. We also observe the same performance of 
the models in the out-of-sample data set. The APARCH (1,1)–
SD model failed to adequately estimate VAR at 90% and 95% 
levels with p-value(s) < 0.05. In general, we conclude that the 
GPD and PIVD favourably capture the extreme risk in JSE All 
Share Index returns.

Conclusion
In this article, we examined the suitability of using APARCH 
(1, 1) framework combined with heavy-tailed distributions 
for modelling VAR for JSE All Share Index returns. The 
APARCH framework was used to capture volatility and 
asymmetric characteristics exhibited by financial returns, 
while the heavy-tailed distributions are used to capture the 
heavy-tailedness of actual return distributions. The GPD, 
PIVD and the SDs are applied to the i.i.d. standardised 
residuals from the APARCH (1,1) model with normal 
innovations and VAR is calculated at different levels. 
Adequacy of the resulting VAR estimates was tested using 
the Kupiec LR test. Backtesting using the Kupiec LR test 
has shown that the APARCH (1,1) with GPD governing 
the innovations is the most robust model at 97.5% and 
95% level. At 90% level, the APARCH (1,1) with PIVD 
governing the innovations is the most robust model for 
estimating VAR for FTSE or JSE ASPI returns. The 
backtesting procedure emphasised the superiority of the 
GPD and PIVD models over Student-t and stable models, 
thus providing a very good candidate as an alternative 
distributional scheme.
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