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Introduction
The importance of measuring residential property price inflation is paramount to households 
and economies; however, the heterogeneity of properties makes it difficult (De Haan & Diewert 
2011). Log linear models have been used extensively in real estate economics to estimate property 
prices and inflation. This study investigates generalised linear models as an alternative to the 
typical log linear approach. Cross-sectional hedonic price functions are developed and compared 
for the South African residential property market over a 5-year period.

Background and objective
Residential property is an important component of individual and national wealth where it is 
capitalised on household balance sheets, informing economic policy formulation (Hill 2013). 
Goodhart and Hoffman (2008) conducted a study providing evidence of relationships between 
house prices, credit and broad money. Using vector auto-regression fitted with ordinary 
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least squares, their research showed statistically significant 
relationships between home prices and the macro economy. 
Bordo and Jeanne (2002) found an increased likelihood of a 
financial crisis occurring when real estate prices reached a 
peak or shortly after a bust, in a study of advanced economies 
spanning from 1970 to 2001. This resonates with the views of 
De Haan and Diewert (2011) who assert that sharp declines in 
home prices can adversely affect the debt to equity ratio and 
credit ratings. Residential property has an important role in 
economies and understanding price inflation is imperative; 
however, measuring price inflation is difficult because of 
infrequent transactions and the heterogeneity of properties.

Hedonic regression is ubiquitous in the construction of 
residential property price indices where log linear models are 
commonly developed in the price estimation procedure (De 
Haan & Diewert 2011; Jiang et al. 2015). Hedonic regression 
has been found useful as a quality-adjusted methodology 
where pure price changes are measured and not simply 
changes in the composition of samples in different periods 
(Shimizu, Nishimura & Watanabe 2010). Hedonic pricing 
measures the price of an item through its utility bearing 
characteristics where the price of the item is determined by 
the vector of its characteristics (Rosen 1974). Hedonic pricing 
describes the functional relationship of a heterogeneous item 
and the implicit attributes:

Pj = P(Zj) = P(Zj1,Zj2, … , Zjk) [Eqn 1]

where Pj is the price of the jth item which is a function of a set 
of characteristics Zj (Goodman 1978). Hedonic pricing is 
useful when estimating the price of heterogeneous goods. 
Heterogeneous or differentiated goods are goods that differ 
in their respective composition of characteristics; however, 
consumers consider the set of characteristics closely related, 
defining it as a single item (Day 2003). Hedonic pricing 
mathematically models residential property prices as a 
function of structural and location characteristics (Lyons 
2015). Ordinary least squares models are typically employed 
to estimate the marginal contributions of each characteristic, 
taking the form:

θ (μ) = Xβ [Eqn 2]

where β is p < n unknown parameters, the matrix Xn×p is a set 
of known independent variables and Xβ is the linear structure 
(Lindsey 2005). The implicit price for characteristic i of 
property j is calculated by taking the partial derivative. 
Because of the positive domain and positively skewed nature 
of residential property prices, log linear models are often 
adopted as a quality-adjusted technique that controls for 
changes in the quality of properties transacted in different 
periods, whilst reducing heteroscedasticity in the residuals 
(Silver 2016). Day (2003); Bourassa, Cantoni and Hoelis 
(2007); and Els and Von Fintel (2010) conducted separate 
hedonic price studies for different property markets using 
log linear models. Els and Von Fintel (2010) found that the 
assumption of the linear functional form was violated, 
finding quantile regression more appropriate to capture the 
hedonic price function. A potential problem with transforming 

property prices to the log scale is that exponentiation of 
the fitted values produces geometric mean estimates and not 
arithmetic mean estimates (Olivier, Johnson & Marshall 
2008). Another potential concern is the assumption that 
property prices are lognormal when a different distribution 
family may represent the data better. Generalised linear 
models incorporate exponential classes of distribution 
families, which facilitate modelling the response on the 
original scale. The objective of this study is to investigate 
generalised linear models as an alternative framework to 
the log linear model in the development of hedonic 
price functions for the South African residential property 
market.

Generalised linear models
Generalised linear models are a natural extension of classical 
linear models where properties such as linearity and 
computing parameter estimates are similar (McCullagh & 
Nelder 1989). Generalised linear models are characterised by 
three components. Firstly, a stochastic or random component 
representing a response variable y, consisting of independent 
observations (y1, y2, … , yn), belonging to a class of an 
exponential family distribution in the form of:

θ
θ θ( ) ( ) ( )∅ =

−
∅

+ ∅











f y

y b
c y; , exp ,  [Eqn 3]

where Ø is a dispersion parameter and b(.), c(.) are known 
functions and the range of Y does not depend on θ or Ø. 
For a random response variable Y with distribution of form 
3 E(y) = μ. Secondly, a systematic component that consists of 
a set of covariates (x1, x2, … , xp) which combine linearly with 
the coefficients to produce the linear predictor η. Therefore, 
η = βX. Finally, a link function that connects the stochastic 
and systematic components where η = μ.

This generalisation takes the form:

ηi = g (μi) [Eqn 4]

where g (.) denotes the link function and η = μ through the 
link function. The link function relates the conditional mean 
to the systematic component, namely the covariates. This 
formulation allows for the exponential family of distributions 
including normal; however, the link function may become 
any monotonic differentiable function, which then allows 
extensions to distributions such as Poisson, binomial and 
gamma amongst others (McCullagh & Nelder 1989). This 
means that generalised linear models are suitable for 
modelling continuous data as well as count and binary data.

Generalised linear models obtain maximum likelihood 
estimates of parameters belonging to an exponential 
distribution family using the iterative reweighted least squared 
algorithm where the link function makes the systematic effects 
linear (Nelder & Wedderburn 1972). Maximum likelihood 
estimates are a vector of parameter estimates produced by a 
model function which makes the observed data probable 
given the model function (Lindsey 2005).
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The primary goodness-of-fit measure for generalised linear 
models is called the deviance which is the logarithm of a ratio 
of likelihoods (McCullagh & Nelder 1989). The analysis of 
deviance makes model assessment and comparison possible 
in terms of the choice of covariates. Given a set of data, two 
extreme models are possible. Firstly, a null model with one 
parameter which represents a common μ for all the ys. 
Secondly, a complete model where all the ys are different, 
matching the data completely. Fitting a model with more 
than one parameter represents a saturated model that can be 
compared to the null model (Dobson & Barnett 2018). The 
fitting of n parameters is performed by maximising the 
likelihood of matching the model to the likelihood of the data 
through the deviance that differs based on the distribution.

For the normal distribution, the deviance is simply the sum 
of squares just like ordinary least squares which means that 
fitting a normal or lognormal distribution with the identity 
link function, where the natural logarithm of the response is 
taken, is equivalent to fitting a linear or log linear ordinary 
least squares model. For generalised linear models, the 
saturated model should have a lower deviance than the null 
model, indicating that the inclusion of n parameters is a 
better fit. Guisan and Zimmernam (2000) propose that 
variance reduction in model formulation is generally a 
desired characteristic of the goodness of fit as with generalised 
linear models, where deviance reduction can be converted to 
an equivalent R2 statistic:

D2 = (Null deviance – Residual deviance) / Null deviance [Eqn 5]

where D2 is the deviance explained or the amount of deviance 
accounted for by the model. Naturally, this leads to an 
understanding of the residuals of generalised linear models 
where the deviance residuals are reported as a measure of 
discrepancy. Deviance residuals are calculated as follows:

µ( )−sign y ˆ di i
2  [Eqn 6]

This formulation shows that deviance residuals are calculated 
by taking the signed square root of the ith observation to 
the total model deviance. One can begin to understand 
the quality of fit that reflects the choice of the link function 
and linear predictor using deviance residuals (Nelder & 
Wedderburn 1972). McCullagh and Nelder (1989) state that 
through the appropriate link function and linearity of the 
systematic component, the desired error distribution of the 
deviance residuals can be achieved which should resemble 
normal theory residual plots, except for certain plots, like in 
the case of binomial errors. Standardised deviance residuals 
are approximately normal which is preferable to Pearson 
residuals that tend to reflect any skewness of the underlying 
distribution. Plotting the standardised deviance residuals 
against the fitted values can provide an informal check of the 
goodness of fit depending on the type of generalised linear 
model, where any curvature could suggest the incorrect 
choice of link function, omitted independent variables or the 
omission of quadratic terms in the independent variables 
(Davidson & Snell 1991).

The selection of generalised linear models in this study 
involved choosing the appropriate distribution of Y and 
choosing the relationship between η and μ. Three candidate 
combinations of model families and link functions were fit to 
the data, specifically the gamma log model, the normal log 
model and the lognormal identity model. These models are 
hereafter referred to as the gamma model, the normal model 
and lognormal model.

Spatial dependency
Prices of adjacent properties are often related which can lead 
to correlation in the residuals of regression models, violating 
the assumption of independence (Bourassa et al. 2007). 
Spatial autocorrelation or dependency is a challenging 
problem in real estate modelling where correlation manifests 
in two-dimensional space unlike serial correlation which 
is one dimensional. Bourassa et al. (2007) found that the 
inclusion of a submarket dummy variable accounted for 
spatial autocorrelation and outperformed geostatistical and 
lattice approaches. A similar approach was adopted in this 
study where a factor area variable was included to account 
for spatial dependence in listing prices.

Variograms were utilised to understand the spatial 
autocorrelation structure. Variograms display the dissimilarity 
of observations that vary in space as a function of the distance 
between them (Ploner 1999). The sill represents spatially 
autocorrelated sample locations, and the range is where the 
distance flattens out and the sample locations are no longer 
spatially autocorrelated. A variogram will be flat when no 
correlation or low correlation is present which indicates 
randomness in the structure (Chiles & Delfiner 1999). The 
nugget effect is an important concept in variograms and 
describes the variability between observations that are 
closely spaced which could be inherent in the data or because 
of the sampling component (Clark 2010). Therefore, in the 
context of this study, a large nugget effect could be the 
product of closely clustered properties with similarly signed 
and order of magnitude residuals that would overestimate 
the amount of spatial dependency. A prevalent test developed 
by Moran (1950) is a two-dimensional specification test for 
spatial autocorrelation, analogous to a test of univariate time 
series correlation (Anselin 2006):

( )=
′
′

I
e We S
e e n

/
 /

 0  [Eqn 7]

where e represents the regression model residuals and w is 
the spatial weighting matrix and s0 is the standardisation 
factor that relates to the sum of weights for the nonzero cross-
products. This test is applied to test for the presence of spatial 
autocorrelation.

Research design
The open source programming language R was used to 
perform the statistical analysis in this research (R Core Team 
2018). The data were provided by an online residential 
property portal that aggregates listings from real estate 
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agencies throughout South Africa. The period of the data is 
from January 2013 to August 2017, and Table 1 describes the 
data set.

The data were inspected for consistency where categorical 
variables were standardised and data types were constrained 
to the correct type. Property listings were duplicated 
by different agencies resulting in many properties being 
captured more than once. This could result in biased 
estimates, and therefore duplicate properties were identified 
and removed using row-wise string matching. Missing 
values resulted in the removal of observations. The summary 
statistics show that the spread of the numeric characteristic 
variables was large with lower and upper bounds that are 
unlikely.

Real estate agents populate data into automated feeds which 
could result in incorrect data capturing and anomalous data. 
To deal with the anomalous data, an autoencoder was 
developed using the H2O open source machine learning 
framework (Ledell et al. 2019). An autoencoder is a deep 
learning neural network aimed at reducing the feature space 
which can be viewed as a non-linear alternative to principal 
component analysis (Hastie, Tibshirani & Wainwright 2015). 
Given enough data, the network will learn the identity of the 
data via non-linear reduced representation of the original 
data (Candel et al. 2018). A high reconstruction error for a 
data point indicates that the data point does not match the 
learned pattern and is anomalous. Lower limits were set on 
the listing price, size and lot variables. Listing price was set to 
≥ ZAR 200 000; size and lot were set to ≥ 35 m2. These figures 
were chosen based on the ABSA Bank property price index 
which was used as a guideline (Luus 2002). Properties with a 
reconstruction mean squared error ≥ 9.39e-07 were discounted. 
Therefore, based on the results of the autoencoder, properties 
in the top 5th percentile of the reconstruction error were 
treated as anomalous.

The final data set consisted of 415 200 properties, and the 
spread of the variable distributions was greatly reduced 
after the anomalous data points were removed, evident in 
Table 2.

Although the lot variable was used to detect anomalous data, 
it was discounted for modelling purposes as lot was not 

applicable for the property type apartment and often omitted. 
Lot was set to the size variable for apartments during the 
autoencoder learning stage.

The design approach chosen develops separate cross-
sectional models for each year in the data which contrasts to 
building a single model using pooled cross-sectional data. 
The chosen framework will facilitate the development of a 
property price index that won’t change previous estimates 
when future periods are introduced. A pooled period 
approach would result in new samples being added to the 
original sample, which would change previous estimations 
when constructing a residential property price index 
(De Haan & Diewert 2011). Therefore, for each year, various 
generalised linear models were developed where listing 
price was regressed on the physical and locational attributes 
of residential properties. Tabular and graphical summaries 
of the model fit for each of the candidate models are 
presented for comparative purposes. Thereafter, based on 
generalisability and goodness of fit, the best model is 
selected and expounded upon.

Ethical considerations
Ethical clearance was obtained from the Research Ethics 
Committee of the University of KwaZulu-Natal, protocol 
reference number: HSS/0209/016M.

Results and discussion
The data were split into two sets, training and validation, 
where 70% of the data were used for training and 30% of 
the data were used for validating the models. This was 
done to test model generalisability on unseen data for the 
development of future models. The holdout data for a given 
model provide a more robust estimate of the generalisation 
error compared to the training error (Blum, Kalai & Langford 
1999). Partitioning the data into training and holdout sets for 
each year involved writing a function to ensure that the splits 
were random and that the distribution of the response was 
similar for each split and to the original data. The function 
ensured that each area factor level was present in each split. 
Model performance and generalisation was tested using the 
root mean squared error (RMSE) which is a measure of 
spread that compares the closeness of the model outcomes to 
the observed data (Gujarati 2004). A lower RMSE is indicative 
of less variability between model estimates and the observed 
data. The Akaike information criterion (AIC) statistics were 
also computed. When comparing models, the AIC is useful 
for model selection as it provides an assessment of the quality 
of different models given a set of data (Greene 2003). A lower 
AIC is indicative of better fit. Akaike information criterion 
concomitantly considers goodness of fit using the likelihood 

TABLE 2: Final data summary statistics.
Variable Listing price Size Lot Bedrooms Bathrooms

Minimum 200 000 35 35 1 1
Mean 2 159 173 231 752 3 2
Maximum 19 700 000 2080 10 365 13 12

Note: The variables have been rounded to the nearest whole number.

TABLE 1: Description of the data.
Variable Type Description Summary statistics 

(min; mean; max)

Listing price Market price The advertised price of  
the property

1,000; 2 461 210; 
200 000 000

Size Structural The size of the structure in square 
meters

2; 260; 85 102

Lot Structural The land size in square meters 2; 1,163; 99 999
Bedrooms Structural The number of bedrooms 0; 3; 78
Bathrooms Structural The number of bathrooms 0; 2; 78
Property type Structural The type of property e.g. house Not applicable
Suburb Locational The suburb the property is located Not applicable
Province Locational The province the property is located Not applicable
Listing date Time The date the property was advertised Not applicable

Note: The variables have been rounded to the nearest whole number.
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function whilst penalising model complexity through the 
number of parameters. Model selection was based on 
a combination of reported statistics, namely deviance 
explained, holdout RMSE, AIC and model fit based on 
diagnostic residual plots. Table 3 details the results of each 
yearly model fit.

Each model produced consistent deviance explained statistics 
for each year respectively, where the gamma and lognormal 
models shared the highest amount of deviance explained. 
Moreover, the gamma and lognormal models appear very 
similar in terms of holdout RMSE and AIC statistics. The 
AICs produced by the lognormal models were not directly 
comparable to the other models as the response variable was 
on the logarithmic scale. The AICs of the lognormal models 
were made comparable by subtracting the sum of logarithms 
of the response variable from the likelihood. Based solely on 
the AICs, the lognormal models appear to fit the data the 
best, as they consistently produced the lowest AIC statistics. 
Considering only the holdout RMSE statistics, the normal 
model outperformed the two other models with consistently 
lower RMSE statistics each year. No evidence of overfitting is 
present as the training and holdout RMSEs are quite similar, 
indicating that the models generalise to unseen data. This 
suggests model robustness to the introduction of future 
periods.

Discerning the best model based solely on the goodness-of-fit 
measures reported above is difficult, and a graphical 
examination of the residuals is necessary. The goodness-of-fit 
residual diagnostic plots for each yearly model are illustrated 
in Figures 1 and 2 from left to right, beginning with the 
gamma model, followed by the normal model and finally the 
lognormal model. Figure 1 presents the residuals versus fitted 
values where the y-axis represents the deviance residuals 
and x-axis represents the fitted values. Figure 2 presents the 
quantile–quantile (Q–Q) plots for normality.

The fitted versus residual diagnostic plots for the gamma and 
lognormal models are very similar and do not indicate any 
discernible pattern in the deviance residuals, one of the 
required assumptions. However, the normal model shows 
signs of heteroscedasticity at the upper quantiles, violating 
the assumption of constant variance.

None of the plots is perfectly normal with deviation at the 
upper and lower quintiles; the S-shaped curves indicate 
heavy tailed residual distributions. The gamma and lognormal 
Q–Q plots appear the best behaved in terms of the normality 
assumption. The normal model appears to fit the data poorly 
in terms of the diagnostic plots, whilst the gamma and 
lognormal models appear to represent the data the best.

A possible caveat of using the lognormal model for modelling 
listing prices is that the expected values are on the log scale 
and back transformation is necessary. Transforming expected 
values from the log scale back to the original scale by means 
of exponentiation results in geometric mean estimates and 
not arithmetic mean estimates (Olivier et al. 2008). However, 
the natural logarithm is monotonic, and the back transformed 
estimates are equivalent to median estimates if the distribution 
of log(x) is symmetric (Musset 2006). An appealing feature of 
the gamma and normal models is that expected values are 
kept on the original scale where arithmetic mean expected 
values are computed. For this reason, the lognormal models 
are discounted from the candidate model selection. The 
gamma models are chosen over the normal models based on 
the diagnostic plots, lower AICs and similar holdout RMSEs. 
A discussion of the gamma modelling results ensues.

The property type factor variable included six levels, namely 
apartment, cluster, duplex, house, simplex and townhouse. 
The property type apartment was used as the reference level, 
resulting in the other property types being compared to this 
level. Table 4 tabulates the beta coefficient estimates for each 
covariate along with the corresponding p-values. To make 
reporting succinct, Table 4 discounted the area (factor 
variable) coefficients as there were over 2000 factor levels 
present in the data that varied between years. The area 
variable was used as a control variable to account for 
variability amongst listing prices and to account for the 
spatial dependency in the data.

The coefficients given by β
∧

 are expressed as percentage 
effects. The covariates log(Size) and the number of bathrooms 
were consistently statistically significant for each year. The 
natural logarithm was applied to the size covariate to 
improve linearity where Figure 3 shows no discernible 
pattern in the plots indicating this transform was appropriate. 
The coefficients can be interpreted as follows:

• A 1% increase in size (square metres), on average, 
increased the listing price of a residential property by 
β ×ˆ 100 (%) for a given year.

• Each additional bedroom, on average, increased the 
listing price of a residential property by β ×ˆ 100 (%) for a 
given year.

TABLE 3: Model summaries.
Year Deviance explained Training RMSE Holdout RMSE AIC

Gamma model summary statistics
2013 0.89 708 816 719 286 665 059
2014 0.87 762 918 764 730 1 689 332
2015 0.87 768 004 772 905 1 808 202
2016 0.87 731 159 746 554 2 557 727
2017 0.88 723 854 724 390 1 779 451
Normal model summary statistics
2013 0.83 666 427 704 715 692 589
2014 0.82 724 525 743 688 1 748 933
2015 0.83 721 649 743 687 1 866 417
2016 0.83 685 171 710 324 2 637 126
2017 0.84 682 036 693 513 1 835 507
Lognormal model summary statistics
2013 0.89 709 765 716 993 664 303
2014 0.88 766 117 762 544 1 687 050
2015 0.87 767 251 774 243 1 805 578
2016 0.88 727 294 741 349 2 553 572
2017 0.88 724 097 726 167 1 777 340

Note: The deviance explained figures are rounded to two decimal places. The other figures 
are rounded to the nearest whole number.
RMSE, root mean squared error; AIC, Akaike information criterion.
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Note: Models from left to right: (a) gamma 2013, (b) gamma 2014, (c) gamma 2015, (d) gamma 2016, (e) gamma 2017, (f) normal 2013, (g) normal 2014, (h) normal 2015, (i) normal 2016, (j) normal 
2017, (k) lognormal 2013, (l) lognormal 2014, (m) lognormal 2015, (n) lognormal 2016, (o) lognormal 2017.

FIGURE 1: Model fitted versus residual plots.
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• Each additional bathroom, on average, increased the 
listing price of a residential property by β ×ˆ 100 (%) for a 
given year.

• The property types in Table 4 are percentage difference 
comparisons between apartments where a property type 

was β ×ˆ 100 (%) greater than or less than apartments 
(reference level) depending on the sign in front of the β

∧

.

It is evident from Table 4 that each additional bathroom, 
on average, contributes more to the listing prices of 
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FIGURE 1 (Continues...): Model fitted versus residual plots.
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homes than each additional bedroom. An appealing feature 
of this parametric framework is the transparency and 
interpretability of the model coefficients. Property market 
participants are able to make informed decisions about 
renovating their homes or making comparative buying decisions 
by examining the marginal utility of different characteristics.

Plotting the residuals against individual covariates of the 
linear predictor should result in a null pattern, like the 
residual versus fitted values plot (McCullagh & Nelder 1989). 
The natural logarithm was applied to the size covariate to 
improve linearity where Figure 4 shows no discernible 
pattern in the plots indicating this transform was appropriate.

Note: Models from left to right: (a) gamma 2013, (b) gamma 2014, (c) gamma 2015, (d) gamma 2016, (e) gamma 2017, (f) normal 2013, (g) normal 2014, (h) normal 2015, (i) normal 2016, (j) normal 
2017, (k) lognormal 2013, (l) lognormal 2014, (m) lognormal 2015, (n) lognormal 2016, (o) lognormal 2017.

FIGURE 2: Model quantile–quantile plots.
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The analysis of deviance presented in Table 5 indicates that 
the residual deviance for each yearly gamma model was 
consistently lower than null deviance. This means that the 
covariates accounted for greater deviance explained than 
intercept only models and as such indicates a good fit.

The modelling of spatial data in this study required the 
assessment of the assumption of independence, which was 

investigated using several plots and by performing 
hypothesis tests. Variograms quantify the spatial dependence 
in data by describing the spatial variance. The yearly gamma 
models’ residuals were plotted using spherical variograms 
and are presented in Figure 4 where similarities were found 
between all models. The ranges, distances beyond which the 
data are no longer correlated, are quite long, which suggests 
spatial autocorrelation is not an issue in the modelling results. 
The nugget effects as a percentage of the total sills are quite 
large which could indicate some variation at a small scale.

A permutation test for Morans I was applied to formally 
test for the presence of spatial autocorrelation where, under 
the null hypothesis, the data are randomly dispersed. 
The Morans I statistic or correlation coefficient ranges 
between -1 and 1, where -1 shows perfect negative spatial 
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FIGURE 3: Gamma model residuals against transformed size covariate.

TABLE 4: Gamma model results summary.
Year 2013 2014 2015 2016 2017

β̂ p β̂ p β̂ p β̂ p β̂ p

Intercept 9.913 2e-9 11.013 2e-9 10.932 2e-9 11.305 2e-9 11.148 2e-9

Log (size) 0.664 2e-9 0.626 2e-9 0.558 2e-9 0.479 2e-9 0.512 2e-9

Bedrooms 0.003 0.313 0.017 2e-9 0.021 2e-9 0.034 2e-9 0.025 2e-9

Bathrooms 0.111 2e-9 0.096 2e-9 0.112 2e-9 0.117 2e-9 0.112 2e-9

Cluster 0.090 2e-9 0.136 2e-9 0.146 2e-9 0.187 2e-9 0.187 2e-9

Duplex 0.003 0.874 0.025 0.104 0.035 0.024 0.086 2e-9 0.079 2e-9

House 0.027 3e-4 0.063 2e-9 0.103 2e-9 0.158 2e-9 0.141 2e-9

Simplex 0.061 4-e5 0.068 5e-7 0.078 2e-9 0.117 2e-9 0.087 2e-9

Townhouse 0.050 0.064 0.063 2e-9 0.077 2e-9 0.090 2e-9 0.099 2e-9

Note: Numbers were rounded to three decimal places and scientific notation was adopted for brevity.

TABLE 5: Analysis of deviance.
Year Residual deviance Null deviance

2013 1470.18 13 394.60
2014 4056.69 31 487.73
2015 4448.07 33 272.34
2016 6030.46 45 648.77
2017 4008.25 32 260.69
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autocorrelation and 1 shows perfect positive spatial 
autocorrelation. Hundreds of permutations were run, 999 in 
total, for each yearly gamma model. The results of the tests 
are presented in Table 6 which indicate a weak negative 
correlation. Formally, at an alpha of 0.05, there is not enough 
evidence to reject the null hypothesis of no spatial 
autocorrelation for each yearly gamma model. This coincides 
with the findings of Bourassa et al. (2007) where the addition 
of a location dummy variable accounted for spatial 
dependence adequately.

Conclusion
Residential property is a barometer of individual and 
collective wealth and acts as measure of financial stability 
in an economy. Measuring residential property prices is 
difficult because of the heterogeneity thereof. The estimation 
of residential property prices using hedonic modelling is 
pervasive in real estate economic literature where log linear 
models are typically employed. This article investigated 
generalised linear models as an alternative to log linear 
models to develop hedonic price functions to estimate 
residential property listing prices in South Africa over a 
5-year period. The gamma generalised linear model provided 
the best fit and good generalisability whilst keeping the 
expected values on the original scale, which is an appealing 
alterative to log linear models. The spatial dependence of 
residential properties was effectively accounted for by 
including an area factor variable, supported by variograms 
and Morans I permutation tests, showing no evidence to 
reject the null hypothesis of no spatial autocorrelation. 
This framework provides property market participants 
with the ability to quantify the utility derived over 
the marginal distribution of the physical characteristics of 
residential properties. This research presents the groundwork 
to create a property price index where index number theory 
could be applied to the hedonic price models to measure 
price inflation over time.
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TABLE 6: Permutation test for Morans I.
Year Statistic p

2013 -0.0312 0.999

2014 -0.0267 0.999

2015 -0.0129 0.999

2016 -0.0207 0.999

2017 -0.0345 0.999

FIGURE 4: Gamma model variogram plots. (a) variogram 2013 model, (b) variogram 
2014 model, (c) variogram 2015 model, (d) variogram 2016 model, (e) variogram 
2017 model.

0.06

0.02

1 2 3 4 5 6

Distance

Se
m

iv
ar

ia
nc

e

0.08
0.06

0.02

1 2 3 4 5 6

Distance

Se
m

iv
ar

ia
nc

e

0.04

0.06

0.02

1 2 3 4 5 6

Distance

Se
m

iv
ar

ia
nc

e

1 2 3 4 5 6

Distance

Se
m

iv
ar

ia
nc

e

0.08
0.06

0.02
0.04

1 2 3 4 5 6

Distance

Se
m

iv
ar

ia
nc

e 0.10

0.06

0.02

a

b

d

e

c

https://www.jefjournal.org.za�


Page 11 of 11 Original Research

https://www.jefjournal.org.za Open Access

References
Anselin, L., 2006, ‘Spatial econometrics’, in T.C. Mills & K. Patterson (eds.), Palgrave 

handbook of econometrics Vol 1, econometric theory, Palgrave Macmillan, 
New York, pp. 901–941.

Blum, A., Kalai, A. & Langford, J., 1999, ‘Beating the hold-out: Bounds for K-fold and 
progressive cross-validation’, COLT ‘99 Proceedings of the twelfth annual 
conference on Computational learning theory, July 07–09, Santa Cruz, CA, 
pp. 202–208.

Bordo, M.D. & Jeanne, O., 2002, Boom-busts in asset prices, economic instability, and 
monetary policy, CEPR Discussion Paper 3398, Centre for Economic Policy 
Research, London, viewed 12 February 2019, from https://www.nber.org/papers/
w8966.

Bourassa, S.C., Cantoni, E. & Hoesli, M., 2007, ‘Spatial dependence, housing 
submarkets, and house price prediction’, Journal of Real Estate Finance and 
Economics 35(1), 142–160. https://doi.org/10.1007/s11146-007-9036-8

Candel, A., LeDell, E., Parmar, V. & Arora, A., 2017, Deep learning with H2O, H2O.ai 
Inc., CA, viewed 20 February 2019, from http://docs.h2o.ai/h2o/latest-stable/
h2o-docs/booklets/DeepLearningBooklet.pdf.

Chiles, J. & Delfiner, P., 1999, Geostatistics: Modeling spatial uncertainty, p. 695, 
John Wiley & Sons, New York.

Clark, I., 2010, ‘Statistics or geostatistics? Sampling error or nugget effect?’, Fourth 
World Conference on Sampling and Blending, vol. 110, Geostokos Ltd, Scotland, 
October 21–23, 2009, pp. 13–18.

Davison, A.C. & Snell, E.J., 1991, ‘Residuals and diagnostics’, in D.V. Hinkley, N. Reid & 
E.J. Snell (eds.), Statistical theory and modelling: In honour of Sir David Cox, 
pp. 83–106, Chapman and Hall, London.

Day, B., 2003, Submarket identification in property markets: A hedonic housing price 
model for Glasgow, Working Paper, The Centre for Social and Economic Research 
on the Global Environment, School of Environmental Science, and University of 
East Anglia, Norwich.

De Haan, J. & Diewert, E., 2011, Handbook on residential property indices, Eurostat 
European Commission, viewed 12 February 2019, from https://ec.europa. eu/
eurostat/documents/3859598/5925925/KS-RA-12-022-EN.PDF.

Dobson, A. & Barnett, A., 2008, ‘An introduction to generalized linear models’, 
in P.C. Bradley, J.F. Julian, T. Martin & Z. Jim (eds.), Texts in statistical science 
series, vol. 77, 3rd edn., Chapman & Hall/CRC Press, Boca Raton, FL.

Els, M. & Von Fintel, D., 2010, ‘Residential property prices in a submarket 
of South Africa: Separating real returns from attribute growth’, South African 
Journal of Economics 78(4), 418–436. https://doi.org/10.1111/ j.1813-
6982.2010.01244.x

LeDell, E., Gill, N., Aiello, S., Fu, A., Candel, A., Click, C. et al., 2019, h2o: R Interface for 
‘H2O’, R package version 3.22.1.1, viewed 01 February 2019, from https://CRAN. 
R-project.org/package=h2o.

Goodhart, C. & Hofmann, B., 2008, ‘House prices, money, credit, and the 
macroeconomy’, Oxford Review of Economic Policy 24(1), 180–205. https://doi.
org/10.1093/oxrep/grn009

Goodman, A.C., 1978, ‘Hedonic prices, price indices and housing markets’, Journal 
of Urban Economics 5(4), 471–484. https://doi.org/10.1016/0094-1190(78) 
90004-9

Guisan, A. & Zimmermann, N.E., 2000, ‘Predictive habitat distribution models in 
ecology’, Ecological Modelling 135, 147–186. https://doi.org/10.1016/S0304-
3800(00)00354-9

Gujarati, D.N., 2004, Basic Econometrics, 4th edn., Tata McGraw-Hill, New York.

Greene, W.H., 2003, Econometric analysis, 5th edn., Prentice Hall, Upper Saddle 
River, NJ.

Hastie, T., Tibshirani, R. & Wainwright, M., 2015, Statistical learning with sparsity: The 
lasso and generalizations, CRC Press, Boca Raton, FL.

Hill, R.J., 2013, ‘Hedonic price indexes for residential housing: A survey, evaluation and 
taxonomy’, Journal of Economic Surveys 27(5), 879–914. https://doi.org/10.1111/j. 
1467-6419.2012.00731.x

Jiang, L., Phillips, P.C. & Yu, J., 2015, ‘New methodology for constructing real estate 
price indices applied to the Singapore residential market’, Journal of Banking & 
Finance 61, 121–131. https://doi.org/10.1016/j.jbankfin.2015.08.026

Lindsey, J.K., 1997, Applying generalized linear models, Springer Science & Business 
Media, New York.

Luus, C., 2002, The ABSA Residential Property Market Database for South Africa–Key 
Data Trends and Implications. BIS papers no 21.

Lyons, R.C., 2015, Measuring house prices in the long run: Insights from Dublin, 1900-
2015, viewed 29 April 2018, from http://eh.net/eha/wp-content/uploads/2015/05/
Lyons.pdf.

Mccullagh, P. & Nelder, J., 1989, Generalized linear models, vol. 37, CRC Press, London.

Moran, P., 1950, ‘A test for the serial independence of residuals’, Biometrika, 37(1–2), 
pp. 178–181.

Musset, L., 2006, OECD environment health and safety publications series on testing 
and assessment, no. 54 [pdf], viewed 12 January 2019, from http://www.oecd.
org/officialdocuments/publicdisplaydocumentpdf/?cote=env/jm/mono(2006) 
18&doclanguage=en.

Nelder, J.A. & Wedderburn, R.W.M., 1972, ‘Generalized linear models’, Journal of 
the Royal Statistical Society Series A 135, 370–384. https://doi.org/10.2307/ 
2344614

Olivier, J., Johnson, W. & Marshall, G., 2008, ‘The logarithmic transformation and the 
geometric mean in reporting experimental IgE results: What are they and when 
and why to use them?’, Annals of Allergy Asthma Immunology 100, 333–338, 
625–626. https://doi.org/10.1016/S1081-1206(10)60595-9

Ploner, A., 1999, ‘The use of the variogram cloud in geostatistical modelling’, 
Environmetrics 10(4), 413–437. https://doi.org/10.1002/(SICI)1099-095X 
(199907/08)10:4%3C413::AID-ENV365%3E3.0.CO;2-U

R Core Team, 2018, R: A language and environment for statistical computing, 
R Foundation for Statistical Computing, Vienna, Austria, viewed n.d., from https://
www.R-project.org/.

Rosen, S., 1974, ‘Hedonic prices and implicit markets: product differentiation in pure 
competition’, Journal of Political Economy 82(1), 34–55. https://doi.org/10.1086/ 
260169

Shimizu, C., Nishimura, K. & Watanabe, T., 2010, ‘Housing prices in Tokyo: A comparison 
of Hedonic and repeat sales measures’, Journal of Economics and Statistics 230, 
792–813. https://doi.org/10.1515/jbnst-2010-0612

Silver, M., 2016, How to better measure hedonic residential property price indexes, 
IMF Working Paper, WP/16/213, IMF, Washington, DC.

https://www.jefjournal.org.za�
https://www.nber.org/papers/w8966�
https://www.nber.org/papers/w8966�
https://doi.org/10.1007/s11146-007-9036-8�
http://docs.h2o.ai/h2o/latest-stable/h2o-docs/booklets/DeepLearningBooklet.pdf�
http://docs.h2o.ai/h2o/latest-stable/h2o-docs/booklets/DeepLearningBooklet.pdf�
https://ec.europa.eu/eurostat/documents/3859598/5925925/KS-RA-12-022-EN.PDF�
https://ec.europa.eu/eurostat/documents/3859598/5925925/KS-RA-12-022-EN.PDF�
https://doi.org/10.1111/j.1813-6982.2010.01244.x�
https://doi.org/10.1111/j.1813-6982.2010.01244.x�
https://CRAN.R-project.org/package=h2o�
https://CRAN.R-project.org/package=h2o�
https://doi.org/10.1093/oxrep/grn009�
https://doi.org/10.1093/oxrep/grn009�
https://doi.org/10.1016/0094-1190(78)90004-9�
https://doi.org/10.1016/0094-1190(78)90004-9�
https://doi.org/10.1016/S0304-3800(00)00354-9�
https://doi.org/10.1016/S0304-3800(00)00354-9�
https://doi.org/10.1111/j.1467-6419.2012.00731.x�
https://doi.org/10.1111/j.1467-6419.2012.00731.x�
https://doi.org/10.1016/j.jbankfin.2015.08.026�
http://eh.net/eha/wp-content/uploads/2015/05/Lyons.pdf�
http://eh.net/eha/wp-content/uploads/2015/05/Lyons.pdf�
http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/jm/mono(2006)18&doclanguage=en�
http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/jm/mono(2006)18&doclanguage=en�
http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/jm/mono(2006)18&doclanguage=en�
https://doi.org/10.2307/2344614�
https://doi.org/10.2307/2344614�
https://doi.org/10.1016/S1081-1206(10)60595-9�
https://doi.org/10.1002/(SICI)1099-095X(199907/08)10:4%3C413::AID-ENV365%3E3.0.CO;2-U�
https://doi.org/10.1002/(SICI)1099-095X(199907/08)10:4%3C413::AID-ENV365%3E3.0.CO;2-U�
https://www.R-project.org/�
https://www.R-project.org/�
https://doi.org/10.1086/260169�
https://doi.org/10.1086/260169�
https://doi.org/10.1515/jbnst-2010-0612�

