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Introduction
Orientation
Passive investment attempts to match the performance of certain market indices rather than 
attempting to outperform these through specific stock assessment and selection. Active investment 
managers invest in funds whose constituents’ worth are independently assessed, whereas their 
passive counterparts construct portfolios of market indices in the proportion they are held in the 
specific index and rebalance these proportions as the market changes.

The goal of active management is to beat the market or outperform agency-determined 
benchmarks. These benchmarks are often inefficient, comprising assets with arbitrarily defined 
upper and lower limits as a result of partial securitisation and free float restrictions. Active 
investing is generally costlier than passive investing (research analysts and portfolio managers 
require compensation, and frequent trading also incurs costs), and many active managers do not 
beat the index after expenses are accounted for. Active managers must also comply with strict 
tracking error (TE) (the variance of the difference between portfolio and benchmark returns) 
ceilings, where punitive penalties for non-compliance can be severe (Riccetti 2012). For these 
reasons, passive investing often outperforms active investments.

The competition between advocates of active and passive management has, however, recently 
(2018) intensified. Historically, passive investing has taken preference globally; however, recent 
evidence identifies a change in this trend (Torr 2018). Today’s (2018) narrow bull market has a 

Orientation: Active portfolio managers must simultaneously maximise excess returns (over 
benchmarks), limit risk and observe constraints on, for example, tracking errors (TRs), betas 
and asset weights.

Research purpose: Determining the range of possible risk and returns attainable by such 
constrained portfolios is of interest to active portfolio managers. Weight restrictions reduce the 
range of achievable returns. This work demonstrates the magnitude of these reductions. 

Motivation for the study: This research installs and augments an approach that ascertains the 
effect on a TR (active) constrained portfolio in absolute risk–return space. The effects are 
displayed in risk–return space, demonstrating the impact on such constraints.

Research approach/design and method: A theoretical approach to plot the constant TR 
frontier was used. Theoretical and quantitative analytical approaches to establish changes in 
the constant TR frontier on a simulated (but highly stylistic) market portfolios were also 
employed.

Main findings: Considerable reduction is observed in possible investable portfolios, even for 
limited asset weight restrictions. This effect is amplified if multiple restrictions are imposed 
simultaneously, driven by both a reduced area in risk–return space enclosed by the constant 
TR frontier and changes in the frontier long-axis slope.

Practical/managerial implications: The change in the long-axis slope sign is also a feature of 
changing economic conditions, thereby acting as an early warning signal with associated 
ramifications for asset managers.

Contribution/value add: The combined effects on active portfolio performance of TR and 
asset weight constraints have not been investigated and demonstrated before.

Keywords: active management; tracking error; weight constraints; benchmarks; market 
portfolios
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fundamental weakness of being top heavy, with the ‘big five’ 
(Facebook, Apple, Amazon, Microsoft and Google) S&P 500 
companies driving the large US index-tracking market. 
These high concentration levels reduce diversification, and 
the emphasis on tracking the S&P 500 has led to overcrowding 
of the Exchange Traded Fund (ETF) market (Brenchley 2018). 
A reversal of this tide would provide an opportunity for real 
dominance by active managers (Gilreath 2017).

The success of active portfolio managers is measured relative 
to a benchmark. The components of these benchmarks are 
frequently defined by agents who may know little about 
asset allocation and whose principal interest is often to limit 
risk through the imposition of strict weight allocation ranges. 
Asset allocation weights can depend on tax considerations, 
geographical restrictions (such as foreign exchange limits) or 
simply agent preferences. Active portfolio components can 
be under- or over-weighted relative to the benchmark, but 
the overall weights can also be negative, that is short 
positions. These constraints coupled with strict TE limits 
generally inhibit fund manager performance. 

Research purpose and objectives
This article contributes by investigating the effect of imposing 
long-only portfolio component weights on active portfolios 
subject to TE constraints. In addition, the effect of asset 
weight ranges on such portfolios is also explored and new 
constrained frontiers are established as a result. Properties of 
such frontiers are of considerable interest to active fund 
managers and investors.

The remainder of this article proceeds as follows: the 
section ‘Literature review’ explores the relevant literature 
governing efficient frontiers subject to no constraints, TE 
frontiers which describe portfolios achieving maximal 
returns whilst subject to a TE constraint, constant TE 
frontiers which embrace all portfolios subject to various 
TEs and finally constrained constant TE frontiers subject to a 
specific TE limit and various asset weight range constraints. 
The section ‘Research design’ describes the stylised data 
used for the study and defines the mathematics relevant to 
the exposition. The results are displayed and discussed in 
the ‘Results and discussion’ section and the section 
‘Conclusion’ concludes.

Literature review
For the fund to outperform the benchmark, the generation 
of a positively expected TE is implied (Roll 1992:17). An 
important criterion for evaluating active manager 
performance is minimising the TE (the standard deviation 
of the difference between fund and benchmark returns). 
Roll (1992) explored this criterion and found that funds 
with the smallest total return volatility implied that TE-
constrained funds would pursue portfolios with a minimum 
TE (the former for a given expected total return and the 
latter for a given expected performance measured relative 
to a benchmark). This approach neglects absolute portfolio 
risk, which means these portfolios are not optimal  

(in mean–variance space) and they are riskier than the 
benchmark. 

Roll (1992:19) also set out the fundamentals for establishing 
the TE frontier: a frontier comprising maximum excess 
returns (relative to a benchmark) and associated risk 
coordinates for different levels of TE. Jorion (2003:78) 
expanded on Roll’s (1992:19) work and set out the relevant 
mathematics to construct a constant TE frontier, that is a locus 
of points comprising all returns and associated risk for 
different levels of TE. This locus was found to be an ellipse in 
mean–variance space and a distorted ellipse in mean–risk 
space. Jorion (2003) also proposed that an optimal measure of 
TE-constrained portfolio performance should be the return 
on the constant TE frontier at a risk equal to that of the 
benchmark. The tilt of the constant TE frontier meant that the 
difference between the maximum return at a given TE level 
and the return associated with Jorion’s (2003) suggestion was 
relatively minor.

Maxwell et al. (2018:5848) extended Jorion’s (2003) work 
and established the analytical solution for the optimal 
Sharpe ratio portfolio on the constant TE frontier. This 
portfolio is the TE-constrained analogue of the optimal 
(efficient) portfolio on the standard efficient frontier. Daly, 
Maxwell and Van Vuuren (2018) explored β, α and utility on 
constant TE frontier. The β frontier is a parabola in risk–
return space, which defines feasible portfolios subject to a 
specified β. An α-TE frontier is assembled from portfolios 
that have a specified α for a maximum TE. Utility and 
associated risk aversion were also explored for TE-
constrained portfolios.

Maxwell and Van Vuuren (2019) investigated the behaviour 
of various portfolio strategies (maximally diversified, exhibit 
risk parity, have minimal intra-correlation and minimum 
risk) on the constant TE frontier. Such portfolios were found 
to behave differently to those which form part of the efficient 
set. Evans and Van Vuuren (2018) used several performance 
indicators to evaluate the benchmark outperformance of six 
active portfolio strategies – subject to a TE constraint – on the 
constant TE frontier.

This catalogue of work involving TE-constrained portfolios 
– although comprehensive – ignores a fundamental reality of 
active portfolios: mandated constraints on constituent asset 
weights. Work that covers this important aspect of active 
portfolios is limited.

Ammann and Zimmermann (2001:40) investigated the 
relation between statistical TE measures and asset allocation 
restrictions expressed as admissible weight ranges by 
simulating investment strategies subject to such constraints. 
By using market data, Ammann and Zimmermann (2001) 
found that imposing large tactical asset allocation ranges 
implied surprisingly small TEs. More recently, Bajeux-
Besnainou et al. (2011) considered portfolio performance 
under simultaneous TE and weight constraints compliance. 
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Both equality and inequality weights constraints were 
considered, and the analytical and geometrical solutions for 
both cases were derived. 

In this article, we use a stylised example of realistic market 
data like that employed by Bajeux-Besnainou et al. (2011) and 
explore the shape of the constant TE frontier under various 
weight constraints for different TEs. We also examine the 
Sharpe ratio and information ratio (IR) profiles of portfolios 
subject to these constraints for the first time. 

Research design
Research approach
To establish the methodologies required for various frontiers, 
some definitions are first required. This section proceeds by 
introducing and describing the relevant variables and 
algebraic components. The mathematics governing the 
generation of the efficient frontier is then set out, followed by 
the algebra that defines the TE frontier and then the constant 
TE frontier. 

Research method
Active fund managers are tasked with outperforming 
specified benchmarks, and the active asset positions they 
take may or may not be benchmark components (depending 
on the mandate governing the fund). The algebra required to 
derive the relevant investment strategy weights uses the 
same underlying variables, matrices and matrix notation, as 
defined below.

q:	� the vector of benchmark weights for a sample 
of N assets

x:	� the vector of deviations from the benchmark
qp(= q + x):	� the vector of portfolio weights
E:	 the vector of expected returns
σ:	 the vector of benchmark component volatilities
r:	 the benchmark correlation matrix
V:	 the covariance matrix of asset returns and
rf :	 the risk-free rate.

Net short sales are allowed in this formulation, so the total 
active weight qi + xi may be negative for any individual asset, 
i. The universe of assets can generally exceed the components 
of the benchmark, but for Roll’s (1992) methodology, assets in 
the benchmark must be included.

Expected returns and variances are expressed in matrix 
notation as:

μB 	 = q’E:	 the expected benchmark return
2σ B  	= q’Vq:	 the variance of benchmark return

μɛ	 = x’E:	 the expected excess return and
2σε  	= x’Vx:	 the TE variance (i.e. TE2).

The active portfolio expected return and variance is  
given by P

'
Bµ µ µ( )= + = + εq x E  and Pσ ( ) ( )= + ′ +q x V q x2 , 

respectively. The portfolio must be fully invested, so (q + x)’ 
1=1 where 1 represents an N-dimensional vector of 1s.

Merton (1972) defined a E b E V c V= ′ = ′ = ′−− −− −−E V , 1, 11 1 1  

  d a b
c

= −1,

2

and 
b
cBµ∆ = −1  where b/c = μMV and 

1
2

2σ∆ = −
cB  

with 1/ 2= σc MV  where MV is the minimum variance 
portfolio.

Note that deviations from the benchmark are represented by 
x, the total portfolio component weights are q + x (= qP) and 
where the investment strategy is unaffected by TE constraints, 
the relevant portfolio weights, w, are used.

Mean variance frontier in risk–return space
Minimise q’PVqP subject to q’P 1 = 1 and q’PE = G where G is the 
target return. The vector of portfolio weights is 

q a bG
d

q
bG b

c
d

qP = −



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+
−

















MV TG

2

 where qMW is the vector of 

asset weights for the minimum variance portfolio given by 

q V
c

= −
MV

11  and qTG is the vector of asset weights for the 

tangent (optimal) portfolio, i.e. q V E
bTG = −1 .

The locus of points in return–risk space is the efficient frontier, 
not subject to sales constraints, that is short-selling of assets is 
permitted (as shown in Figure 1). Imposing a long-only 
constraint on efficient portfolios requires a recursive 
algorithm to solve for constituent weights, there is no closed-
form solution to this problem.

Unconstrained tracking error frontier in risk–return space
Maximise x′E subject to x′1 = 0 and σ′ = εx Vx 2. The solution 
for the vector of deviations from the benchmark is 

x
d

V E b
c

σ= ± −






ε −
1 .

2
1  The solution to this optimisation 

problem generates the TE frontier, a portfolio’s maximal 
return at a given risk level and subject to a TE constraint (as 
shown in Figure 1). 

The benchmark – also indicated in Figure 1 – may be 
efficient, in which case it would lie on the efficient frontier. 
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FIGURE 1: Efficient frontier and tracking error frontier in mean–standard 
deviation space. The diamond marker indicates the benchmark on the tracking 
error frontier.
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In reality, the benchmark is somewhat arbitrarily selected 
(a mix of stock and bonds or an inefficient market index), 
so it is frequently not a member of the efficient portfolio 
set. This TE frontier passes through the benchmark 
position where TE = 0.

Unconstrained constant tracking error frontier
Maximise x′E subject to x′1 = 0, 2σ′ = εx Vx  and 

q x q x Pσ) )( (+ + ='V .
2

The vector of deviations from the benchmark is 

x V E Vq
λ λ

λ λ( )= −
+

+ +−1

2 3

1

1 3  where 
b

c
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,1
3  

d
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Jorion (2003:81) established that the solution for this 
optimisation describes an ellipse – a constant TE frontier – in 
return–risk space: the unconstrained1 constant TE frontier 
(Figure 1). This frontier establishes the boundary of possible 
risk–return combinations of (i.e. satisfies the mandatory TE 
constraints) active portfolios. The upper segment of this 
frontier, shown in Figure 2, is bounded on the left by the 
minimum variance portfolio and above by the maximum 
return portfolio. The arc between these portfolios on the 
unconstrained constant TE frontier represents the efficient set 
of portfolios subject to a specific TE, in this example 5% 
(Palomba & Riccetti2019). 

We display the entire TE ellipse to demonstrate the domain 
of all possible TE-constrained portfolios, even the 
inefficient ones. In our experience, although portfolio 
managers do not consider portfolios with high risk, given 
the same return, sometimes the vagaries of market 
conditions render their portfolios inefficient. Note that 
each risk–return combination within a TE ellipse (even the 
benchmark risk and return) has the same TE. The 
benchmark’s risk–return combination may be achieved via 
many different constituent weight combinations – not just 
the unique benchmark configuration. If the benchmark’s 
risk–return coordinate is within the TE ellipse, a 
combination of constituent weights exists, which leads to 
the same risk–return benchmark coordinate. The asset 
weights will nevertheless be sufficiently different from the 
benchmark weights to warrant a TE ≠ 0.

The locus of the constant TE ellipse in return–risk space 
under increasing TEs is informative.

At first localised on the benchmark portfolio position, the 
ellipse expands (long and short axes increase) as TE increases 
until the left end coincides with the efficient frontier’s turning 
point region. Increasing TE still further drags the ellipse back 
to the right and increasing TE further shifts the frontier so far 
to the right that the benchmark is eventually excluded, that is 

1.Unconstrained because there are no restrictions on the values of the relative asset 
weights,x.

it lies outside the ellipse. In such cases, the TE is sufficiently 
loose to permit a high enough level of risk between the 
portfolio and the benchmark as to exclude benchmark 
constituents entirely.2

Long-only, inequality weight-constrained constant 
tracking error frontier
Here we use the results of Bajeux-Besnainou et al. (2011), 
allowing ω ≥ 0 or ≤ 0 (i.e. short positions permitted), and 
consider a subset ℓ of the N traded assets. These are the limited 
or restricted assets because portfolios will be constrained to a 
limited weight or limited range of weights in these ℓ assets. 
Then 1ℓ is the N-dimensional vector such that:

1 if asset

0 if asset







=
∈
∉






1 i

i

Consider an inequality constraint ω′ ≤qP1  where ω is a 
weight constraint such that the weights may be ≥ 0 or ≤ 0 
provided 1.ω∑ =i  An example shown in Table 1 might be 
that the sum of domestic asset weights must not constitute 
more than half the portfolio or:

50%.

1

N

∑ω ≤
=i

di

2.The TE frontier is the locus of risk–maximum return points for many different TEs. 
The constant TE frontier is the locus of points, which encloses all possible risk–
return combinations for a single TE. The maximum return obtainable for a given TE 
on the constant TE frontier is, by definition, also a point on the TE frontier – hence 
their intersection at the maximum return.

TABLE 1: Stylised input data.
Assets Domestic Foreign

d1 d2 d3 d4 d5 d1 d2

Benchmark weights (%) 14.3 14.3 14.3 14.3 14.3 14.3 14.3

Annual return (%) 16.7 16.0 14.9 15.8 14.5 12.0 15.3

Annual volatility (%) 19.0 27.0 22.0 26.0 21.0 27.0 26.0

Correlation matrix 1 0.3 0.3 0.3 0.3 0.2 0.2

0.3 1 0.3 0.3 0.3 0.2 0.2

0.3 0.3 1 0.3 0.3 0.2 0.2

0.3 0.3 0.3 1 0.3 0.2 0.2

0.3 0.3 0.3 0.3 1 0.2 0.2

0.2 0.2 0.2 0.2 0.2 1 0.2

0.2 0.2 0.2 0.2 0.2 0.2 1

Maximum return
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FIGURE 2: Constant (unconstrained) tracking error frontier for TE = 5% and TE 
frontier for 0% ≤ TE ≤ 8%.2
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Bajeux-Besnainou et al. (2011) define a risk-aversion 
parameter, γ, and a risk-tolerance parameter, θ, which are 
related by:

.θ
γ

= ′ −V E1 1

The objective is to maximise 
2
γ′ −E x x'Vx  (recall that 

= −x q qP , i.e. deviations from the benchmark) subject to 
1’x = 0 and 



ω.≤qP1'  Bajeux-Besnainou et al. (2011) provide 
derivations and solutions for this and other formulations.

The loci of the inequality weight-constrained constant TE 
frontier – as constraints change – are shown in Figure 3, and 
the consequences of the changing shape are discussed in the 
section ‘Results and discussion’.

Measuring instruments
The data comprised simulated realistic weights, returns, 
volatilities and correlations for a small, standardised benchmark 
comprising equal weights in seven assets (five domestic: d1 to d5, 
and two foreign: f1and f2) with the stylised description as given 
in Table 1. This numerical example – and the reason for using 
simulated rather than historical parameters – is to provide 
continuity and to allow for better comparison of our results with 
those obtained by Bajeux-Besnainou et al. (2011).

Research procedure
We also tested portfolios comprising assets with higher 
correlations, with correlations < 0 and using some negative 
expected returns. The results were broadly the same, even 
though some of the calculated weights for the optimisation 
procedure become negative as a consequence of these changes.

Portfolio constituents were derived from the universe of 
investable assets (i.e. domestic and foreign components). 

Note that the assets which constitute the portfolio in the 
following examples could be asset classes (such as equity, 
bonds and cash), specific industry sectors within an asset 
class (e.g. an industrial equity index, a banking and finance 
index, etc.) or individual assets such as single name stocks 
or bonds.

Ethical consideration
This article followed all ethical standards for research without 
direct contact with human or animal subjects.

Results and discussion
By using the stylised example set out in the section 
‘Research design’, comprising domestic and foreign assets 
(Table 1), various constraints were placed on portfolio 
constituents to explore their effects on the shape of the 
constant TE frontier. 

A common restriction on component weights is that long-
only positions are permitted, i.e. qP > 0. Individual assets 
may still be underweight in relation to the benchmark, in 
which case x < 0, but q + x > 0. Imposing this restriction 
shrinks the ellipse of feasible portfolios, where similar 
returns for low levels of risk can be achieved (i.e. the south-
west end of the ellipse). However, as more risk is taken on, 
a greater deviation from the unconstrained constant TE 
frontier can be observed (eastern end). The east and north 
ends of the ellipse contract (i.e. both the long [south-west to 
north-east] and short [north-west to south-east] axes 
shorten) and the slope of the long axis decreases. Recent 
research (Gunning & Van Vuuren 2019) has also established 
that slope sign changes can act as early warning signals for 
the onset of economic downturns with significant 
ramifications for fund managers.

Some results are presented in Figure 3 – all for a constant 
TE = 5%.
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FIGURE 3: Unconstrained (long and short positions permissible) constant tracking error frontier for TE = 5% and the sum of domestic weights ∑iwdi ≤ 95%, 90%, 85% 
and 80%.
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The grey dashed line shows the unconstrained constant TE 
frontier. This is the locus of points in return–risk space 
defined by the maximum and minimum obtainable annual 
returns at each level of risk subject to a portfolio TE constraint 
only (i.e. weights can be positive or negative). 

Imposing the inequality 
1

∑ ω ω≤
=

d
i

N

i
 (for decreasing w s) 

continues to shrink both long and short axes, with the result 
that the original ellipse ‘deflates’ whilst remaining hinged to 

the south-west end. As 
1∑ ω

=
d

i

N

i
 recedes from 100%, the 

portfolio’s maximum returns – even for low σP s – decrease. 

At 80%
1

∑ ω ≤
=

d
i

N

i
, the benchmark already falls outside the 

frontier. For a TE = 5%and an inequality restriction that the 
sum of the domestic weights must be < 80%, the benchmark 
falls outside the ellipse (in this stylised example), meaning 
that the benchmark’s unique combination of risk and return 
is not possible for a portfolio subject to these (relatively mild) 
constraints. The important point is that – even for relatively 
moderate limits on acceptable asset weights – the range of 
portfolios that satisfy the relevant constraints becomes 
severely diminished, and even the benchmark portfolio is 
rendered unattainable, a result also obtained by Wagner 
(2003) and Palomba and Riccetti (2012).

The slope of the ellipse’s long axis also decreases at the asset 
weight restrictions increase. For the unconstrained constant 
TE, the slope is positive (and ≈ 0.13) for TE = 5% as shown in 
Figure 4 for the unconstrained constant TE frontier (showing 
a positive long-axis slope) and the constant TE frontier where 

80%
1

∑ ω ≤
=

d
i

N

i
 (showing a negative long-axis slope). 

For increasing constraints on ,
1

∑ ω
=

d
i

N

i
 the slope diminishes 

but less rapidly as the constraint increases. At the relatively 

benign constraint of 88%,
1

∑ ω ≤
=

d
i

N

i
 the long-axis slope 

becomes negative. This change in the constant TE’s long-axis 
slope has important consequences for asset allocation and 
managing investment styles. Even mild constraints (in the sense 

that this restriction is common in active portfolio management 
and often more so than this) change the slope sign and result in 
inefficient portfolios (see Gunning & Van Vuuren 2019).

The inclusion of a risk-free asset in the portfolio was also 
considered. Inverting a variance covariance matrix (VCV) 
with one (or more) component = 0%, however, results in 
divisions by 0 and associated intractable mathematical 
problems, so a small – but non-zero risk – ‘risk free’ security 
was included.3 This addition did not alter the results – the 
position of the ellipse in return–risk space was altered, but 
the orientation of the ellipse’s axes and the reduction in area 
of possible portfolios were negligible unless the weight of the 
risk-free security was unrealistically high. 

Allowing for short selling did not change the results either. 
When the weight restrictions were imposed, portfolio 
weights were always > 0% for the configuration employed in 
this work (i.e. volatilities, expected returns, correlations and 
benchmark weights) (see Figure 3). For correlations < 0 or for 
negative expected returns, weights < 0% become relevant as 
the benefits from diversification are invoked to maximise 
portfolio returns. Again, however, this did not change the 
orientation of the ellipse’s axes nor the rate of reduction in 
investable portfolio area.

We also considered multiple constraints, for example, the 
imposition of weight restrictions on both domestic and 
foreign securities simultaneously. The universe of possible 
portfolios shrinks faster – with increasing restrictions – than 
that observed for restrictions on only domestic assets. 
Portfolio constraints in the form of weight restrictions reduce 
the portfolio choice considerably to the point of vanishing 
relevance as these constraints become more limiting as 
shown in Figure 5.

Imposing weights constraints reduces the number of 
investable portfolios because of an overall reduction in TE 

3.Such a security is not unrealistic.

14.5

15.0

15.5

16.0

16.5

13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0

An
nu

al
 re

tu
rn

 (%
)

Annual risk (%)

Unconstrained constant
tracking error fron�er

Long axis slope > 0

Long axis slope < 0

∑ N

i=1 ωd  ≤ 80%
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ellipse region as well as a telescoped efficient arc brought 
about by a negative long-axis slope (Figure 6). Maximum 
Sharpe ratio portfolios occur where the ‘capital market line’ 
(originating on the return axis at the risk-free rate) is tangent 
to the constant TE frontiers. For larger constant TE ellipses 
(unconstrained), the long-axis slope is positive, and the range 
of portfolio efficiency spans a wide range of portfolio risk. 
For smaller constant TE ellipses, i.e. ones for which a weight 
constraint has been imposed, not only has the TE ellipse 
shrunk considerably but also the change in the long-axis 
slope from positive to negative has occurred, thereby 
reducing the efficient arc ‘length’. The combined effect of 
these TE ellipse changes substantially reduces potential 
investment possibilities.

The Sharpe ratio was calculated for increasing domestic 
asset weight restrictions between 80% ≤ wd 100% on the 
constrained constant TE frontier, given a constant TE of 5%. 
The constraints precipitate an imploding investible 

universe, where annual returns of a portfolio and 
subsequently the return of the maximum Sharpe ratio 
portfolio exponentially decrease, for each feasible risk 
exposure as shown in Figure 7.

It is interesting to note that, although the range of attainable 
Sharpe ratios diminishes with increasing domestic asset 
weight constraints, the maximum Sharpe ratio for each 
constrained portfolio does not change much. This is because 
the north-west corners of these ellipses are hinged – which 
coincide with the position of the maximum Sharpe ratio 
because of the strong negative long-axis slope.

The IR is given by:

Excess return
,=IR

TE

where ‘excess return’ is the return in excess of the benchmark 
return.
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Bajeux-Besnainou et al. (2011) introduced the adjusted IR 
(AIR), that is the IR of a portfolio subject to a weight 
constraint. Such a portfolio may be understood by 
invoking an adjusted benchmark defined as the closest 
portfolio to the benchmark, which satisfies the TE and 
other relevant constraints. The adjusted benchmark is, 
however, not observable and must be assembled by using 
empirical historical returns. For this reason, we avoided 
the use of the AIR.

Both IR and Sharpe ratios diminish with increasing 
restrictions. Unconstrained portfolios occupy the largest area 
in risk–return space, and this space diminishes as constraints 
are added. The more restrictive the constraint, the smaller the 
potential investment area and the lower the performance 
ratio attainable. The IR diminishes to zero (and can become 
negative for more severe constraints on asset weights) 
because at these high weight constraints, the excess return 
over the benchmark approaches 0% (see Figure 3).

Conclusion
Outline
Optimising portfolios’ risk and return originated with 
Markowitz (1956). The literature has since seen a proliferation 
of research, which has evolved from the original mean–
variance space to relative mean–variance space (i.e. active 
funds whose performance is measured relative to a 
benchmark). Research then followed an interrogation of TE-
constrained portfolios, but to date, not much work has been 
conducted on, for example, TE-constrained and asset weight-
constrained portfolios simultaneously. Portfolio optimisation 
in excess return space subject to these multiple constraints is 
an area, which lacks fundamental research.

Practical implications
This work – by using stylised market data for simulations – 
developed the constant TE frontier subject to asset weight 

constraints and established the region in mean–variance 
space of possible risk–return coordinates for increasingly 
restrictive boundaries. Unconstrained (i.e. long and short 
absolute positions permitted) portfolios subject to a TE 
occupied the largest possible area in risk–return space. Each 
subsequent restriction diminished this area by shortening 
both the long and short axes of the constant TE ellipse. This 
shortening was asymmetrical: the left end of the long axis 
and the bottom end of the short axis were fixed for increasing 
restrictions on asset components – thus, these constraints 
reduce the maximum returns attainable whilst reducing the 
risk. The range of possible investable portfolios (i.e. the 
region in risk–return space enclosed by the constant TE 
frontier) shrinks rapidly and considerably with increasing 
severity of restrictions, even for relatively small constraints. 
Combining multiple constraints, such as restrictions on both 
domestic and foreign weights, amplifies this reduction. The 
change in the slope of the constant TE frontier’s long axis 
reduces the range of investable portfolios by shrinking the 
range of the efficient portfolio set.

At sufficiently ‘severe’ constraints, the benchmark lies 
outside the realm of possible portfolios. This means that for 
suitably restrictive constraints, the region of possible risk–
return combinations does not embrace a sufficiently large 
area to include the benchmark. The benchmark and portfolio 
are considerably different, and acceptable risk–return 
coordinates for the former do not apply to the latter.

Limitations and recommendations
This work used stylised simulation inputs – future work 
could consider real portfolio data evolving over time to 
establish how the constant TE frontier changes in crisis 
periods when also constrained by asset weights.

Normal distributions of returns are assumed in the mean–
variance framework; this restrictive assumption could be 
relaxed in ongoing studies to consider other return 
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distributions, including fat-tailed ones such as Students’t 
or Cauchy. Relative portfolio performance, under even 
more constraints such as those imposed by β and α 
mandated requirements, could also be considered. 
Although related portfolios have been investigated (Daly 
et al. 2018), earlier work did not include the effect of asset 
weight constraints.
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